首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here the successful establishment of callus, cell and root cultures from explants of in-vitro-grown plantlets of the soapwort Saponaria officinalis L. The production of saporin in the different tissue systems was evaluated by determining the capability of crude extracts to inactivate protein synthesis and by Western blotting analysis. Protein synthesis inhibition varied in callus and derived cell suspensions and in cultured roots, the latter, in particular, showing the lowest specific activity. The ribosome-inactivating principle from root cultures was purified to homogeneity by cation exchange chromatography. Received: 2 October 1996 / Revision received: 24 January 1997 / Accepted: 15 February 1997  相似文献   

2.
Two new N-glycosidase type-1 ribosome-inactivating proteins (RIPs), denoted petroglaucin 1 and petrograndin, respectively, were isolated from the plantsPetrocoptis glaucifolia (Lag.) Boiss sp.viscosa (Rothm.) Laínz andPetrocoptis grandiflora Rothm. These new RIPs do not share H2N-terminal amino-acid sequence homology with petroglaucin (now denoted as petroglaucin 2), the only other type-1 RIP to be isolated fromP. glaucifolia (Arias et al. (1992) Planta186, 532–540). Petroglaucin 1 shares amino-acid sequence homology with RIPs from Cucurbitaceae while petroglaucin 2 and petrograndin do so with saporins and dianthin 30 (Caryophyllaceae). The new RIPs strongly inhibited protein synthesis at subnanomolar concentrations in rabbit reticulocyte lysates and other eukaryotic cell-free systems, but they were inactive on bacterial ribosomes.  相似文献   

3.
The antiviral activity of the type-2 ribosome-inactivating protein (RIP) IRAb from Iris was analyzed by expressing IRAb in tobacco (Nicotiana tabacum L. cv. Samsun NN) plants and challenging the transgenic plants with tobacco mosaic virus (TMV). Although constitutive expression of IRAb resulted in an aberrant phenotype, the plants were fertile. Transgenic tobacco lines expressing IRAb showed a dose-dependent enhanced resistance against TMV infection but the level of protection was markedly lower than in plants expressing IRIP, the type-1 RIP from Iris that closely resembles the A-chain of IRAb. To verify whether IRIP or IRAb can also confer systemic protection against viruses, transgenic RIP-expressing scions were grafted onto control rootstocks and leaves of the rootstocks challenged with tobacco etch virus (TEV). In spite of the strong local antiviral effect of IRIP and IRAb the RIPs could not provide systemic protection against TEV. Hence our results demonstrate that expression of the type-1 and type-2 RIPs from Iris confers tobacco plants local protection against two unrelated viruses. The antiviral activity of both RIPs was not accompanied by an induction of pathogenesis-related proteins. It is suggested that the observed antiviral activity of both Iris RIPs relies on their RNA N-glycohydrolase activity towards TMV RNA and plant rRNA.Abbreviations GUS -Glucuronidase - IRAb Iris agglutinin b - IRIP Iris type-1 RIP - PAG Polynucleotide:adenosine glycosylase - PAP Phytolacca americana antiviral protein - PR Pathogenesis-related - RIP Ribosome-inactivating protein - TCS Trichosanthin - TEV Tobacco etch virus - TMV Tobacco mosaic virus  相似文献   

4.
Oleosins of Brassica napus L. (oilseed rape) synthesized by in-vitro translation were found to be very efficiently targeted to microsomal membranes but only poorly translocated to oil bodies or emulsified oil. The use of other bilayer membranes as controls showed that this interaction was specific. The rate of oleosin synthesis in the presence of microsomes was enhanced about threefold, indicative of the involvement of the signal-recognition particle in the targeting process. There is no evidence for the cleavage of the protein during targeting and the protein sequence reveals no consensus cleavage site for the signal peptide. Protection experiments using Proteinase K revealed that about 6 kDa of the protein is exposed on the cytoplasmic side of the ER but the remainder is protected. Carbonate (pH 11) washing of microsomal membranes after in-vitro translation confirmed that oleosins have a domain which remains inserted in the ER rather than the protein being transported completely into the lumen of the ER. These results indicate that oleosins are transported via the ER prior to their accumulation on oil bodies.  相似文献   

5.
6.
The effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively. Both lipid mixtures on Milli-Q water were first compressed to the initial surface pressure, Π0 = 30 mN/m and then the subphase was exchanged with the respective (bio)surfactant solution at 1% (w/w). All four synthetic surfactants behaved in a similar way: they increased surface pressure to about 40 mN/m and reduced the storage modulus of surface dilational surface rheology, E′, to the values close to zero. The corresponding fluorescence microscopy pictures confirmed that the lipids mimicking the stratum corneum components were almost completely removed by the synthetic surfactants under the present experimental conditions. The components of the Soapwort extract (SAP) increased surface pressure to significantly higher values than the synthetic surfactants, but even more spectacular increase was observed for the storage modulus of the SAP-penetrated lipid monolayers (up to E′= 715 mN/m).  相似文献   

7.
Four type-1 (single-chain) ribosome-inactivating proteins (RIPs), with isoelectric points between 9.5 and 9.7, were isolated from leaves of Phytolacca dioica L. The purification procedure furnished the four proteins with an overall yield of about 16% and separated them from a protein of 29 407 ± 2 Da, as determined by electrospray mass spectrometry, whose N-terminal amino acid sequence differed from that of pokeweed (Phytolacca americana L.) leaf chitinase (PLC-B) by only one amino acid (R17I). The four RIPs (PD-L1 to PD-L4) inhibited protein synthesis by a rabbit reticulocyte lysate with 50% inhibition at the picomolar level, and produced the β-fragment, diagnostic of the specific enzymatic action of RIPs, on yeast ribosomes. Comparison of their N-terminal sequences, up to residue 45, showed that PD-L1 is identical to PD-L2 [designated the isoleucine (Ile) form from the N-terminal residue] and PD-L3 is identical to PD-L4 [designated the valine (Val) form from the N-terminal residue] and that there are 35 identical residues between the two forms. Furthermore, the Val form presents the same number of identical residues as PD-S2, an RIP isolated from the seeds of the same plant. With the exception of PD-L4, the purified RIPs gave a positive reaction when stained for sugars on SDS-PAGE gels and, when analyzed by electrospray mass spectrometry, had Mr values of 32 715 ± 1 (PD-L1), 31 542 ± 1 (PD-L2), 30 356 ± 1 (PD-L3) and 29 185 ± 1 Da (PD-L4). The 1171 kDa difference in Mr, within the same RIP form, could be due to glycosylation. Like leaf saporins and many other RIPs, the four RIPs released several adenines from poly(A), herring sperm DNA and rRNA 16S + 23S, thus acting as polynucleotide:adenosine glycosidases. This property was less pronounced in PD-L1 and PD-L3 than in PD-L2 and PD-L4, respectively. The proteins PD-L1 and PD-L4 showed 3.7% reactivity with the antiserum anti-dianthin 32 and no reactivity with antisera to PAP-R saporin-S6, momordin I and even PD-S2, an RIP isolated from the seeds of the same plant. Protein PD-L4 showed 12.5% cross-reactivity with anti-PD-L1, while the opposite cross-reactivity was 100%. Received: 5 August 1998 / Accepted: 28 October 1998  相似文献   

8.
The HVA1 protein belongs to the LEA3 group, which is expressed during the late stage of seed maturation. It is also induced by exogenous abscisic acid (ABA) and a variety of environmental stresses in germinating barley (Hordeum vulgare L.). In the present work, the potential role of HVA1 was investigated by studying its tissue distribution and subcellular localization in mature and stressed seeds by immuno-microscopic methods. In the mature seed, HVA1 protein was detected in all tissues except the non-living starchy endosperm. During germination the amount of HVA1 protein decreased but did not totally disappear. Incubation with 100 μM ABA, cold treatment or drought stress dramatically increased HVA1 expression in the germinated seed. In this work, the distribution of a LEA3 group protein was studied in a cereal seed for the first time by immuno-electron microscopy. In the scutellum and aleurone layer, HVA1 was localized both in the cytoplasm and protein storage vacuoles (PSVs). HVA1 protein was found to be threefold more abundant in PSVs than in the cytoplasm of an unstressed seed tissue. The ratio increased with ABA or stress treatments to at least ninefold. The role of HVA1 in PSVs remains unclear: a previously suggested possibility is ion sequestration to prevent precipitation during stress. On the other hand, HVA1 protein could also be degraded in PSVs. HVA1 protein does not have the signal peptide typical of proteins which are glycosylated and targeted into the vacuole via the Golgi complex. Because HVA1 is not glycosylated, it may use an alternative, ER-independent vacuolar pathway, also found in yeast cells.  相似文献   

9.
Extracts of bean (Phaseolus vulgaris L. cv. Greensleeves) cotyledons contained two abundant proteins: vicilin and phytohemagglutinin. Vicilin, a 6.9 S protein fraction at neutral pH, associated to an 18.0 S form at pH 4.5 and had 3 non-identical subunits with molecular weights (MW) of 52,000, 49,000 and 46,000. Phytohemagglutinin, a 6.4 S protein fraction, had 2 non-identical subunits with MW of 34,000 and 36,000. Phytohemagglutinin could be separated by isoelectrofocusing into a mitogenic and non-erythroagglutinating protein with a single subunit of MW=34,000, and a mitogenic and erythroagglutinating protein fraction which contained both subunits. Vicilin is apparently identical with the so called glycoprotein II (A. Pusztai and W.B. Watt, Biochim. Biophys. Acta 365, 57–71, 1970) and with globulin G1 (R.C. McLeester, T.C. Hall, S.M. Sun, F.A. Bliss, Phytochem. 2, 85; 1973), while phytohemagglutinin is identical with globulin G2 (McLeester et al., 1973). Since vicilin and phytohemagglutinin are internationally used names there is no need to introduce new names to describe P. vulgaris reserve proteins. Both proteins are catabolized in the course of seedling growth and are located in the protein bodies, indicating that they are reserve proteins. Vicilin isolated in its 18.0 S form from the cotyledons of young seedlings contains substantial quantities of smaller polypeptides, in addition the 3 original ones. We suggest that the presence of these small polypeptides represents partial breakdown of the vicilin prior to its complete catabolism.  相似文献   

10.
Developing cotyledons of the common bean, Phaseolus vulgaris L., transport within their secretory system (endoplasmic reticulum and Golgi apparatus) the abundant vacuolar proteins, phaseolin and phytohemagglutinin. To identify proteins that may play a role in vacuolar targeting, we treated cotyledon microsomal fractions with a bifunctional crosslinking reagent, dithiobis(succinimidyl propionate), isolated protein complexes with antibodies to phaseolin and phytohemagglutinin, and analysed the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis. This allowed us to identify a protein of Mr=9000 (P-9000) that was crosslinked to both phaseolin and phytohemagglutinin. P-900 is abundantly present in the endoplasmic reticulum. The aminoterminus of P-9000 shows extensive sequence identity with the amino-terminus of PA1 (Mr=11 000), a cysteine-rich albumin whose processing products accumulate in the vacuoles of pea (Pisum sativum L.) cotyledons. Like PA1, P-9000 is synthesized as a pre-proprotein that is posttranslationally processed into smaller polypeptides. The possible functions of P-9000 are discussed.Abbreviations DSP dithiobis(succinimidyl propionate) - EDTA ethylenediaminetetraacetic acid - ER endoplasmic reticulum - kDa kilodalton - Mr relative molecular mass - PHA phytohemagglutinin - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

11.
The expression of type 1 ribosome-inactivating proteins (RIPs) in Phytolacca dioica L. leaves was investigated. Fully expanded leaves of young P. dioica plants (up to 3 years old) expressed two novel RIPs, dioicin 1 and dioicin 2. The former was also found in developing leaves from adult P. dioica within about two and a half weeks after leaf development, and the latter continuously synthesized, with no seasonal or ontogenetic constraint. Fully expanded leaves from adult P. dioica expressed four RIPs (PD-Ls1–4) exhibiting seasonal variation. RIPs were localized in the extracellular space, in the vacuole and in the Golgi apparatus of mesophyll cells. Dioicin 1 and dioicin 2 showed rRNA N-β-glycosidase activity and displayed the following properties, respectively: (1) Mr values of 30,047.00 and 29,910.00, (2) pIs of 8.74 and 9.37, and (3) IC50 values of 19.74 (0.658 nM) and 6.85 ng/mL (0.229 nM). Furthermore, they showed adenine polynucleotide glycosylase activity and nicked pBR322 dsDNA. The amino acid sequence of dioicin 2 had 266 amino acid residues, and the highest percentage identity (81.6%) and similarity (84.6%) with PAP-II from Phytolacca americana, while its identity with other RIPs from Phytolaccaceae was around 40%. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Augusto ParenteEmail:
  相似文献   

12.
A new family of single chain (type 1) ribosome-inactivating proteins (RIPs), that we have named ebulitins, have been found in mature leaves of Sambucus ebulus L., a caprifoliaceae plant also known to contain a non-toxic two chain (type 2) RIP named ebulin 1 in its leaves. Ebulitins are basic proteins of Mr 32,000, 29,000 and 29,000 for ebulitins , β and γ, respectively. The simultaneous presence of different basic type 1 and acidic type 2 RIPs in the same plant and in the same tissue is described here for the first time and opens a new door in research into RIPs.  相似文献   

13.
A novel ribosome-inactivating protein, designated Trichosanthrip, was purified from mature seeds of Trichosanthes kirilowii Maxim by cation-exchange and gel-filtration chromatography. Trichosanthrip migrated as a single band in SDS–PAGE, with an apparent molecular mass of 13 kDa. The molecular mass of Trichosanthrip was 10,964.617 Da as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Trichosanthrip showed N-glycosidase activity on 28 S rRNA and strongly inhibited cell-free protein synthesis, with an IC50 of 1.6 ng/ml. Liquid chromatography–tandem mass spectrometry showed that Trichosanthrip was a novel protein with similar sequence to other proteins present in members of the Cucurbitaceae.  相似文献   

14.
Antisera raised againstl-phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), and a cationic cell-wall peroxidase, which had all been purified from suspension-cultured cells of French bean, have been used to carry out immunogold localisations in the growing plant. Immunoglobulin-G fractions were prepared from each antiserum and used to study the distribution of the enzymes in differentiating and wounded hypocotyls by immunogold techniques and visualisation by both light and electron microscopy. Following silver enhancement to amplify the signal, proteins were detected by confocal microscopy in both developing (pre-xylem/ phloem) and later metaxylem stelar tissue.l-Phenylalanine ammonia-lyase and C4H also accumulated in cells adjacent to metaxylem, presumably involved in maintaining a supply of phenylpropanoid precursors to the enucleated xylem for further lignin synthesis. In these cells, PAL subunits were cytosolic although some were associated with endomembrane. Cinnamate-4-hydroxylase was wholly associated with membrane and particularly high concentrations were found in the Golgi bodies. The cationic peroxidase accumulated in xylem at sites of secondary thickening and in the middle lamella. The three proteins are also involved in defensive lignification. Thus when visualised by light microscopy, PAL and C4H were seen to accumulate to high levels throughout the cell types in wound sites and especially in the epidermal cells. An even more intense general distribution was found upon hyperinduction of wounded cells with-aminooxy--phenylpropionic acid. At the subcellular level, PAL was found to be localised in the cytosol in the wounded cells; however, because of the loss of membrane through mechanical damage, association with membrane structures, particularly endoplasmic reticulum, in unwounded cells is not entirely ruled out. Cinnamate-4-hydroxylase was associated with membranes when these were preserved. In wounded tissue, the peroxidase was found at the growing edges of tylose-like structures in the vascular xylem.Abbreviations AOPP -aminooxy--phenylpropionic acid - C4H cinnamic acid-4-hydroxylase - CHS chalcone synthase - GRP glycine-rich glycoprotein - HRGP hydroxyproline-rich glycoprotein - Ig immunoglobulin - PAL phenylalanine ammonia-lyase G.P.B. thanks the Agicultural and Food Research Council for support.  相似文献   

15.
Chambery A  Di Maro A  Parente A 《Phytochemistry》2008,69(10):1973-1982
Seeds from Phytolacca dioica L. contain at least three N-glycosylated PD-Ss, type 1 ribosome-inactivating proteins (RIPs), which were separated and purified to homogeneity by conventional chromatographic techniques. ESI-Q-TOF mass spectrometry provided the accurate M(r) of native PD-S1 and PD-S3 (30957.1 and 29785.1, respectively) and the major form PD-S2 (30753.8). As the amino acid sequence of PD-S2 was already known, its disulfide pairing was determined and found to be Cys34-Cys262 and Cys88-Cys110. Further structural characterization of PD-S1 and PD-S3 (N-terminal sequence determination up to residue 30, amino acid analysis and tryptic peptide mapping) showed that the three PD-Ss shared the entire protein sequence. To explain the different chromatographic behaviour, their glycosylation patterns were characterized by a fast and sensitive mass spectrometry-based approach, applying a precursor ion discovery mode on a Q-TOF mass spectrometer. A standard plant paucidomannosidic N-glycosylation pattern [Hex(3), HexNAc(2), deoxyhexose(1), pentose(1)] was found for PD-S1 and PD-S2 on Asn120. Furthermore, a glycosylation site carrying only a HexNAc residue was identified on Asn112 in PD-S1 and PD-S3. Finally, considering the two disulfide bridges and the glycan moieties, the experimental M(r) values were in agreement with the mass values calculated from the primary structure. The complete characterization of PD-Ss shows the high potential of mass spectrometry to rapidly characterize proteins, widespread in eukaryotes, differing only in their glycosylation motifs.  相似文献   

16.
Nullisomic analysis of waxy (Wx) protein of hexaploid wheat (Triticum aestivum L.) cv. “Chinese Spring” using two-dimensional polyacrylamide gel electrophoresis revealed that threeWx loci,Wx-A1, Wx-B1, andWx-D1, located on chromosome arms 7AS, 4AL, and 7DS, produce three distinct Wx subunit groups, subunit group-A (SGA), SGB, and SGD, respectively. SGA has a higher molecular weight and a more basic isoelectric point (pI) than the other two. SGB and SGD have the same molecular weight but a slightly different pI range. Owing to the detection of these three subunit groups, we were able to identify the expression of three waxy genes in wheat endosperm and to find two types of mutants among Japanese wheat cultivars, one lacking SGA and the others SGB. These results suggest the possibility of breeding a waxy wheat.  相似文献   

17.
A major wall protein of suspension-cultured cells of French bean has been isolated and characterised. It can be prepared from walls or the culture filtrate and in composition it is particularly rich in proline, valine and glutamic acid/glutamine and contains appreciable amounts of hydroxyproline. The N-terminus shows some glycosylation, while following chemical deglycosylation the first 38 residues were found to be identical to those of proline-rich proteins from soybean. However, the composition of the highly purified Mr-42000 bean protein differs considerably from the soybean proteins and must contain its own specific domains. An antibody was raised and used to demonstrate the inducibility of the Mr-42000 bean protein in response to elicitor action. The protein was found to be mainly localised in the intercellular spaces of the cortical cells of bean hypocotyls and at the wall-plasmalemma interface of xylem vessels, another potentially accessible compartment for pathogens. Following wounding, the protein was found to be generally distributed in the wall of epidermal and cortical cells of the hypocotyls. The Mr-42000 protein is cross reactive with antibodies raised to glycoproteins of the Rhizobium infection thread and the chitin-binding hydroxyproline-rich glycoprotein, potato lectin. These common epitopes together with the previously demonstrated chitin-binding properties of the bean protein indicate a role in host-microbial interactions. Furthermore, the Mr-42000 protein itself bound to the growing hyphal tips of the bean pathogen, Colletotrichum lindemuthianum.Abbreviations FITC fluorescein isothiocyanate - IgG immunoglobulin G - PAL phenylalanine ammonia-lyase We thank Dr Nick Brewin for advice on interpretation of immunolocalisations and for the gift of MCA 265. We thank Dudley Fernandino for carrying out the confocal microscopy. GPB thanks the Science and Engineering Research Council for funding.  相似文献   

18.
Three C hordein fractions were prepared by ion-exchange chromatography of a total hordein preparation on carboxymethyl cellulose at pH 4.6 Polyacrylamide gel electrophoresis at pH 3.2 and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) at pH 8.9 showed that each fraction contained a single major band. The apparent molecular weights of these were determined by SDS-PAGE as 58, 57, and 54,000. When compared by isoelectric focusing, however, the 58 and 57,000 components each separated into two major bands and the 54,000 component into four. Amino acid analysis showed that although the three fractions had similar compositions with high glutamate+glutamine (38–39%), proline (30–32%) and phenylalanine (8–9%) contents, some differences were present, notably in the relative content of lysine. The three fractions had identical amino acid sequences for the first ten residues at the N-terminal end. They also had identical sequences for the first five residues at the C-terminal end, with the exception that a mixture of two amino acids were released from position 4 of the 58,000 fraction only. Peptide mapping with three enzymes (trypsin, chymotrypsin and V8 protease) indicated that the 58 and 57,000 fractions were more closely related to each other than to the 54,000 fraction. It is suggested that the 57 and 58,000 fractions and the 54,000 fraction constitute two families of closely related polypeptides which are coded by genes derived from the duplication and divergence of a single ancestral gene.  相似文献   

19.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance.  相似文献   

20.
Summary. Ascorbate peroxidase (EC 1.11.1.11), a heme-containing homodimeric protein, is a hydrogen peroxide-scavenging enzyme, playing an important role in plants in order to protect them from oxidative stress, thus adverting cellular damage. Several ascorbate peroxidase isoenzymes have been reported but the understanding of their physiological role still depends on a better knowledge of their precise localisation within plant organs. Immunocytochemistry techniques were performed in order to elucidate the peroxisomal and cytosolic ascorbate peroxidase distribution within tissues of leaves and sprouts of potato plants. The peroxisomal isoenzyme was found to have a broad distribution in sprouts, but a differential one in leaves, being restricted to the spongy parenchyma. This differential expression may be associated to the mesophyll asymmetry and the diverse physiological processes that occur in it. The cytosolic isoenzyme was not detected in leaves under the used conditions, probably because it is present in low amounts in these tissues. The results obtained in sprouts were at least curious: cytosolic ascorbate was found to be adjacent to the amyloplasts. Given these results, it is possible to state that apart from their similarity, these two isoenzymes reside in different organelles and seem to take part in different physiological processes as suggested by their organ- and tissue-specific distribution. Correspondence and reprints: Plant Functional Biology Department, Institute for Cell and Molecular Biology, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号