首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

2.
De Wit replacement series were used to study competitive interactions between epiphytic Ice+Pseudomonas syringae strains and the biological frost control agents Ice-P. syringae TLP2del1 and Pseudomonas fluorescens A506. Mixtures containing two strains in different proportions but at a constant total population size were inoculated onto potato leaves. The population sizes of each strain and the total population size were determined when the community had reached equilibrium. A near-isogenic P. syringae strain pair exhibited an interaction similar to that expected for strains competing equally for limiting environmental resources. Replacement series with nonisogenic Ice+ and Ice-P. syringae strain pairs suggested that these strains competed for limiting resources according to their relative competitive abilities. There was no evidence of any niche differentiation between the Ice+P. syringae strains and the Ice-P. syringae strain. The growth responses of epiphytes following addition of nutrients to the phyllosphere indicated that the epiphytic P. syringae populations were nutrient limited and that, under growth chamber conditions, the populations were more limited by the availability of carbon than by the availability of nitrogen. Determination of in vitro carbon source utilization profiles provided further evidence for the lack of niche differentiation between the Ice+ and the Ice-P. syringae strains. Niche overlap indices calculated for the Ice+P. syringae strains with respect to Ice-P. syringae TLP2del1 were uniformly high, indicating ecological similarity, and were consistent with the observed low level of coexistence. The biological frost control agent P. fluorescens A506 replaced P. syringae. This was correlated with a high degree of niche overlap between these species.  相似文献   

3.
The invasion and exclusion abilities of coexisting Pseudomonas syringae strains were quantified on leaves. Twenty-nine P. syringae strains were inoculated onto plants in 107 pairwise combinations. All pairs were duplicated so that each strain was inoculated both first as an antagonist strain (day 0) and second as a challenge strain (day 3). The population size of each strain in a mixture was quantified on day 6 following incubation under moist conditions. For P. syringae strains, the presence of an established population often significantly reduced the growth of subsequently arriving challenge strains on the leaf surface. Invasion and exclusion abilities, quantified by contrasting population sizes of challenge strains in the presence and in the absence of another strain, varied significantly among P. syringae strains and were partly a function of the particular strain pair. The population size of a strain when present alone on a leaf was not predictive of invasion or exclusion ability. Successful invaders were significantly less likely to exclude challenge populations than were nonsuccessful invaders. Population sizes of successful excluders were negatively correlated with population sizes of coexisting challenge strains, while population sizes of successful invaders were positively correlated with those of coexisting antagonist strains. The patterns of interaction among coexisting strains suggest mechanisms for successful invasion and exclusion among P. syringae strains on leaves.  相似文献   

4.
The epiphytic fitness of four Tn5 mutants of Pseudomonas syringae that exhibited reduced epiphytic fitness in the laboratory was evaluated under field conditions. The mutants differed more from the parental strain under field conditions than under laboratory conditions in their survival immediately following inoculation onto bean leaves and in the size of the epiphytic populations that they established, demonstrating that their fitness was reduced more under field conditions than in the laboratory. Under both conditions, the four mutants exhibited distinctive behaviors. One mutant exhibited particularly large population decreases and short half-lives following inoculation but grew epiphytically at near-wild-type rates, while the others exhibited reduced survival only in the warmest, driest conditions tested and grew epiphytically at reduced rates or, in the case of one mutant, not at all. The presence of the parental strain, B728a, did not influence the survival or growth of three of the mutants under field conditions; however, one mutant, an auxotroph, established larger populations in the presence of B728a than in its absence, possibly because of cross-feeding by B728a in planta. Experiments with B728a demonstrated that established epiphytic populations survived exposure of leaves to dry conditions better than newly inoculated cells did and that epiphytic survival was not dependent on the cell density in the inoculum. Three of the mutants behaved similarly to two nonpathogenic strains of P. syringae, suggesting that the mutants may be altered in traits that are missing or poorly expressed in naturally occurring nonpathogenic epiphytes.  相似文献   

5.
Abstract The influences of plant species and plant incubation conditions on the variability in bacterial population sizes among leaves were investigated in field and growth chamber studies. Pseudomonas syringae strains TLP2 and Cit7 were inoculated onto plants and population sizes were measured at intervals after inoculation. Total bacterial population sizes were also assessed in field studies. Levels of leaf-to-leaf variability in both P. syringae population size and bacterial community size differed significantly among plant species. For all plant species, variability among leaves in population sizes of inoculated bacteria was consistently greater than the leaf-to-leaf variability in numbers of total bacteria. Considering levels of variability in population size immediately prior to and following incubation under either wet or dry physical conditions, leaf-to-leaf variability in the population sizes of inoculated P. syringae strains increased significantly following incubation under dry, but not under wet, conditions. Measurements of leaf-to-leaf variability immediately prior to and following incubation were positively correlated regardless of whether the incubation was under wet or dry conditions, though the correlation was greater following dry incubation. These data provide insight into the biological and physical factors that may be important in generating variability in bacterial population sizes among leaves, and they have important implications for the design of appropriate strategies for sampling leaf surface microbial populations.  相似文献   

6.
The levels of coexistence between Pseudomonas syringae and various nonpathogenic epiphytic species in the phyllosphere of beans (Phaseolus vulgaris) were assessed by using replacement series. The epiphytic species Pseudomonas fluorescens, Pantoea agglomerans, Stenotrophomonas maltophilia, and Methylobacterium organophilum were all capable of exhibiting higher levels of coexistence with P. syringae than was observed with a near-isogenic P. syringae strain pair. The ecological similarity of the epiphytes was estimated with niche overlap indices derived from in vitro carbon source utilization profiles. The level of coexistence of the epiphytes was inversely correlated with the ecological similarity of the strains. Hence, the level of coexistence between the epiphytes was proportional to the degree of niche differentiation, defined as the ability to utilize carbon sources not utilized by a competing strain. Comparisons of utilization profiles for groups of carbon sources (amino acids, organic acids, and carbohydrates) indicated the types of carbon sources for which the strains likely competed in the bean phyllosphere. P. fluorescens and P. syringae strains probably competed for most carbon sources. S. maltophilia and M. organophilum strains probably competed with P. syringae for most organic acids but few amino acids or carbohydrates. P. agglomerans strains probably competed with P. syringae for most amino acids and organic acids but few carbohydrates. A variable level of coexistence observed between P. agglomerans and P. syringae probably reflected the variability in abundance in the bean phyllosphere of the carbohydrates that P. agglomerans utilized exclusively.  相似文献   

7.
It has been demonstrated that for a nonpathogenic, leaf-associated bacterium, effectiveness in the control of bacterial speck of tomato is correlated with the similarity in the nutritional needs of the nonpathogenic bacterium and the pathogen Pseudomonas syringae pv. tomato. This relationship was investigated further in this study by using the pathogen Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato, and a collection of nonpathogenic bacteria isolated from tomato foliage. The effects of inoculation of tomato plants with one of 34 nonpathogenic bacteria prior to inoculation with the pathogen X. campestris pv. vesicatoria were quantified by determining (i) the reduction in disease severity (number of lesions per square centimeter) in greenhouse assays and (ii) the reduction in leaf surface pathogen population size (log10 of the number of CFU per leaflet) in growth chamber assays. Nutritional similarity between the nonpathogenic bacteria and X. campestris pv. vesicatoria was quantified by using either niche overlap indices (NOI) or relatedness in cluster analyses based upon in vitro utilization of carbon or nitrogen sources reported to be present in tomato tissues or in Biolog GN plates. In contrast to studies with P. syringae pv. tomato, nutritional similarity between the nonpathogenic bacteria and the pathogen X. campestris pv. vesicatoria was not correlated with reductions in disease severity. Nutritional similarity was also not correlated with reductions in pathogen population size. Further, the percentage of reduction in leaf surface pathogen population size was not correlated with the percentage of reduction in disease severity, suggesting that the epiphytic population size of X. campestris pv. vesicatoria is not related to disease severity and that X. campestris pv. vesicatoria exhibits behavior in the phyllosphere prior to lesion formation that is different from that of P. syringae pv. tomato.  相似文献   

8.
The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain.  相似文献   

9.
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (107 versus 105 CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (107 versus 106 CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (105 to 106 CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>108 CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.  相似文献   

10.
Pseudomonas syringae is a common foliar bacterium responsible for many important plant diseases. We studied the population structure and dynamics of the core genome of P. syringae via multilocus sequencing typing (MLST) of 60 strains, representing 21 pathovars and 2 nonpathogens, isolated from a variety of plant hosts. Seven housekeeping genes, dispersed around the P. syringae genome, were sequenced to obtain 400 to 500 nucleotides per gene. Forty unique sequence types were identified, with most strains falling into one of four major clades. Phylogenetic and maximum-likelihood analyses revealed a remarkable degree of congruence among the seven genes, indicating a common evolutionary history for the seven loci. MLST and population genetic analyses also found a very low level of recombination. Overall, mutation was found to be approximately four times more likely than recombination to change any single nucleotide. A skyline plot was used to study the demographic history of P. syringae. The species was found to have maintained a constant population size over time. Strains were also found to remain genetically homogeneous over many years, and when isolated from sites as widespread as the United States and Japan. An analysis of molecular variance found that host association explains only a small proportion of the total genetic variation in the sample. These analyses reveal that with respect to the core genome, P. syringae is a highly clonal and stable species that is endemic within plant populations, yet the genetic variation seen in these genes only weakly predicts host association.  相似文献   

11.
Xanthomonas campestris pv. glycines is the causal agent of bacterial pustule disease of soybeans. The objective of this work was to construct a nonpathogenic mutant derived from the pathogenic wild-type strain YR32 and to evaluate its effectiveness in preventing growth of its parent on the soybean phyllosphere. A mini-Tn5-derived transposon was used to generate nonpathogenic mutants. Southern hybridization and pulsed-field gel electrophoresis confirmed the presence of a single transposon in each of the nonpathogenic mutants. One of the nonpathogenic mutants, M715, failed to induce a hypersensitive response in tomato leaves. An ice nucleation gene (inaZ) carried in pJL1703 was introduced into strain YR32 as a reporter gene to demonstrate that the presence of M715 could reduce colonization of the soybean phyllosphere by YR32. de Wit serial replacement analysis showed that M715 competed equally with its wild-type parental strain, YR32. Epiphytic fitness analysis of YR32 in the greenhouse indicated that the population dynamics of strains YR32, YR32(pJL1703), and M715 were similar, although the density of the mutant was slightly less than that of its parent. The M715 mutant was able to survive for 16 days after inoculation on soybean leaves and maintained population densities of approximately 104 to 105 cells g (fresh weight) of leaf−1. Therefore, M715 shows promise as an effective biocontrol agent for bacterial pustule disease in soybeans.  相似文献   

12.
Agrocin-producing pathogenic and nonpathogenic biotype-3 strains ofAgrobacterium tumefaciens were isolated from grapevine gall tissue. In vitro activity of the nonpathogenic agrocin producers was restricted to biotype-3 pathogens used. Pathogenic agrocin producers were active in vitro against biotype-3 agrocin-producing nonpathogens, non-agrocin-producing pathogens, and biotype-1 strains when cultivated on a modified Stonier's medium; on a medium designated AB, two strains stested showed no activity against agrocin-producing nonpathogens, but agrocin of one of these strains was active against other agrocin-producing pathogens. In a greenhouse experiment a marked tendency toward decreased gall formation by biotype-3 pathogens on grapevines was obtained when biotype-3 pathogens and nonpathogenic biotype-3 agrocin producers were applied to wounds simultaneously. In this experiment, agrocin-producting pathogens tended to be more virulent than non-agrocin-producing pathogens.  相似文献   

13.
The occurrence of “Xanthomonas axonopodis pv. phaseoli var. fuscans” (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 105 CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

14.
There have been many attempts to control bacterial wilt with antagonistic bacteria or spontaneous nonpathogenic mutants of Pseudomonas solanacearum that lack the ability to colonize the host, but they have met with limited success. Since a large gene cluster (hrp) is involved in the pathogenicity of P. solanacearum, we developed a biological control strategy using genetically engineered Hrp- mutants of P. solanacearum. Three pathogenic strains collected in Guadeloupe (French West Indies) were rendered nonpathogenic by insertion of an ω-Km interposon within the hrp gene cluster of each strain. The resulting Hrp- mutants were tested for their ability to control bacterial wilt in challenge inoculation experiments conducted either under growth chamber conditions or under greenhouse conditions in Guadeloupe. Compared with the colonization by a pathogenic strain which spread throughout the tomato plant, colonization by the mutants was restricted to the roots and the lower part of the stems. The mutants did not reach the fruit. Moreover, the presence of the mutants did not affect fruit production. When the plants were challenge inoculated with a pathogenic strain, the presence of Hrp- mutants within the plants was correlated with a reduction in disease severity, although pathogenic bacteria colonized the stem tissue at a higher density than the nonpathogenic bacteria. Challenge inoculation experiments conducted under growth chamber conditions led, in some cases, to exclusion of the pathogenic strain from the aerial part of the plant, resulting in high protection rates. Furthermore, there was evidence that one of the pathogenic strains used for the challenge inoculations produced a bacteriocin that inhibited the in vitro growth of the nonpathogenic mutants.  相似文献   

15.
The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions on leaf surfaces and the implications for biological control of pathogenic and other deleterious microorganisms is discussed.  相似文献   

16.
Random Tn5 mutagenesis was used to identify genes ir. Pseudomonas syringae which contribute to epiphytic fitness. Mutants were selected on the basis of deficiencies in epiphytic growth or survival on plants rather than deficiencies in predetermined phenotypes exhibited in culture. A sample freezing procedure was used to measure the population sizes of 5,300 mutants of P. syringae exposed to alternating wet and dry conditions on bean leaves in growth chambers. Eighty-two mutants exhibited reduced population sizes. Of these mutants, over half exhibited a reduced ability to survive the stresses associated with dry leaves, while others grew more slowly or attained reduced stationary-phase population sizes on leaves. While some epiphytic fitness mutants were altered in phenotypes that could be measured in culture, many mutants were not altered in any in vitro phenotype examined. Only three of the epiphytic fitness mutants were auxotrophs, and none had catabolic deficiencies for any of 31 organic compounds tested. Other mutants that exhibited reductions in one or more of the following were identified: motility, osmotolerance, desiccation tolerance, growth rate in batch culture, and extracellular polysaccharide production. All of the mutants retained the abilities to produce disease symptoms on the compatible host plant, bean, to incite a hypersensitive response on the non-host plant, tobacco, and to produce a fluorescent pyoverdine siderophore.  相似文献   

17.
Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated onto and into plant leaves. For example, while none showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular spaces of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parental strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sites protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possibly several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes.  相似文献   

18.
Scanning electron microscopy indicated that Pseudomonas syringae pv. syringae L795 entered leaves through stomata and multiplied in the substomatal chambers. Strain L195 applied to blossoms colonized stigmas and also occurred in intercellular spaces of styles. Nonpathogenic strain L796 failed to colonize blossoms. This study suggests that inoculum of pathogenic P. syringae pv. syringae builds up on apple leaves and blossoms.  相似文献   

19.
20.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号