首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C M Bergamini 《FEBS letters》1988,239(2):255-258
Calcium binding to erythrocyte transglutaminase was determined by equilibrium dialysis. Results indicate that 6 ions are bound to the enzyme both in the absence and in the presence of GTP and that the nucleotide reduces the affinity of the enzyme for calcium. Furthermore, I- fluorescence quenching and proteolytic inactivation experiments proved that GTP also alters the conformation of the enzyme. It is thus suggested that multiple mechanisms are involved in the regulation of the enzyme activity by GTP.  相似文献   

2.
A crosslinking enzyme, epidermal transglutaminase, was isolated from soluble proteins of glabrous cow snout epidermis. This enzyme stabilized fibrin clots rendering them insoluble in 2% acetic acid. It also catalyzed the incorporation of the fluorescent amine, dansyl cadaverine, into casein. Epidermal transglutaminase was purified by chromatography upon DEAE-Sephadex A-50, zone electrophoresis in Pevikon, and Sephadex G-200 gel permeation chromatography. The highly purified substance, which had a specific activity of 3267 amine-incorporating units/mg per h and a molecular weight of 55000, behaved as a single molecular species in the analytical ultracentrifuge. It had a sedimentation coefficient of 4.4 S and migrated as a gamma-globulin at pH 8.6; it displayed anomalous migration in polyacrylamide gels containing sodium dodecyl sulfate. The enzyme was dependent upon free calcium ions and a reduced sulfhydryl group for activity. The apparent Km for dansyl cadaverine was 1.2 - 10(-4) at pH 7.5. Monospecific antiserum to bovine epidermal transglutaminase precipitated with the enzyme in agar. The antiserum prevented fibrin crosslinking but enhanced incorporation of dansyl cadaverine into casein by the enzyme. The epidermal enzyme differed biochemically and immunochemically from bovine plasma transglutaminase (Factor XIII).  相似文献   

3.
A cellulase (endo-beta-1,4-D-glucanase, EC 3.2.1.4) from blue mussel (Mytilus edulis) was purified to homogeneity using a combination of acid precipitation, heat precipitation, immobilized metal ion affinity chromatography, size-exclusion chromatography and ion-exchange chromatography. Purity was analyzed by SDS/PAGE, IEF and RP-HPLC. The cellulase (endoglucanase) was characterized with regard to enzymatic properties, isoelectric point, molecular mass and amino-acid sequence. It is a single polypeptide chain of 181 amino acids cross-linked with six disulfide bridges. Its molecular mass, as measured by MALDI-MS, is 19 702 Da; a value of 19 710.57 Da was calculated from amino-acid composition. The isoelectric point of the enzyme was estimated by isoelectric focusing in a polyacrylamide gel to a value of 7.6. According to amino-acid composition, the theoretical pI is 7.011. The effect of temperature on the endoglucanase activity, with carboxymethyl cellulose and amorphous cellulose as substrates, respectively, was studied at pH 5.5 and displayed an unusually broad optimum activity temperature range between 30 and 50 degrees C. Another unusual feature is that the enzyme retains 55-60% of its maximum activity at 0 degrees C. The enzyme readily degrades amorphous cellulose and carboxymethyl cellulose but displays no hydrolytic activity towards crystalline cellulose (Avicel) and shows no cross-specificity for xylan; there is no binding to Avicel. The enzyme can withstand 10 min at 100 degrees C without irreversible loss of enzymatic activity. Amino-acid sequence-based classification has revealed that the enzyme belongs to the glycoside hydrolase family 45, subfamily 2 (B. Henrissat, Centre de Recherches sur les Macromolecules Végétales, CNRS, Joseph Fourier Université, Grenoble, France, personal communication).  相似文献   

4.
Tissue transglutaminase (E.C.2.3.2.13, R-glutaminyl-peptide: amine glutaminyl transferase), was purified from extracts of rat liver by calcium dependent affinity chromatography on casein-Sepharose. In the presence of 5 mM calcium the enzyme binds to casein Sepharose and is subsequently eluted with 5 mM EGTA. The enzyme has a molecular weight of 83,000 and its activity is dependent on calcium and reduced sulfhydryl residues. A widely distributed calcium-dependent protease (E.C. 3.4.22.17) copurified with transglutaminase by gel filtration and ion exchange chromatography. The separation of these activities prior to chromatography on casein-Sepharose is essential for the isolation of a stable transglutaminase by calcium-dependent affinity chromatography. Affinity chromatography using casein-Sepharose or other immobilized substrates may allow the calcium-dependent purification of a variety of transglutaminases.  相似文献   

5.
Calcium ions are crucial for expression of transglutaminase activity. Although lanthanides have been reported to substitute for calcium in a variety of protein functions, they did not replace the calcium requirement during transglutaminase activity measurements. Furthermore, lanthanides strongly inhibited purified liver transglutaminase activity using either casein or fibrinogen as substrates. Terbium (III) inhibition of transglutaminase-catalyzed putrescine incorporation into casein was not reversed by the presence of 10–200 fold molar excess of calcium ions (Ki for Tb(III)=60 µM). Conformational changes in purified liver transglutaminase upon Tb(III) binding were evident from a biphasic effect of Tb(III) on transglutaminase binding to fibrin. Low concentrations of Tb(III) (1 µM to 10 µM inhibited the binding of transglutaminase to fibrin, whereas higher concentrations (20 µM to 100 µM promoted binding. Conformational changes in purified liver transglutaminase consequent to Tb(III) binding were also demonstrated by fluorescence spectroscopy due to Forster energy transfer. Fluorescence emission was stable to the presence of 200 mM NaCl and 100 mM CaCl2 only partially quenched emission. Purified liver transglutaminase strongly bound to Tb(III)-Chelating Sepharose beads and binding could not be disrupted by 100 mM CaCl2 solution. Our data suggest that Tb(III)-induced conformational changes in transglutaminase are responsible for the observed effects on enzyme structure and function. The potential applications of Tb(III)-transglutaminase interactions in elucidating the structure-function relationships of liver transglutaminase are discussed.  相似文献   

6.
Intracellular transglutaminases (protein-glutamine: amine gamma-glutamyltransferase, EC 2.3.2.13) are calcium-dependent thiol enzymes that catalyze the covalent cross-linking of proteins, including those in the erythrocyte membrane. Several studies suggest that the activation of some transglutaminases is positively regulated by the calcium-dependent cysteine protease, mu-calpain. Using mu-calpain null (Capn1(-/-)) mouse erythrocytes, we demonstrate that the activation of soluble as well as membrane-bound forms of transglutaminase (TG2) in mouse erythrocytes was independent of mu-calpain. Also, the absence of mu-calpain or any detectable cysteine protease did not affect the transglutaminase activity in the erythrocyte lysate. Our studies also identify physiological substrates of mu-calpain in the erythrocyte membrane and show that their cleavage has no discernible effect on the transglutaminase mediated cross-linking of membrane proteins. Taken together, these data suggest the existence of a calpain-independent mechanism for the activation of transglutaminase 2 by calcium ions in the mouse erythrocytes and presumably also in non-erythroid cells.  相似文献   

7.
The gene encoding the D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3 was cloned and sequenced. Analysis of 7.3 kb of genomic DNA revealed the presence of six ORFs, one of which (daaA) encodes the D-amino-acid amidase. This enzyme, DaaA, is composed of 363 amino-acid residues (molecular mass 40 082 Da), and the deduced amino-acid sequence exhibits homology to alkaline D-peptidase from Bacillus cereus DF4-B (32% identity), DD-peptidase from Streptomyces R61 (29% identity), and other penicillin-recognizing proteins. The DaaA protein contains the typical SXXK, YXN, and H(K)XG active-site motifs identified in the penicillin-binding proteins and beta-lactamases. The daaA gene modified in the nucleotide sequence upstream from its start codon was overexpressed in Escherichia coli. The activity of the recombinant DaaA enzyme in cell-free extracts of E. coli was 33.6 U. mg-1 with D-phenylalaninamide as substrate, which is about 350-fold higher than in extracts of O. anthropi SV3. This enzyme was purified to electrophoretic homogeneity by ammonium sulfate fractionation and three column chromatography steps. On gel-filtration chromatography, DaaA appeared to be a monomer with a molecular mass of 40 kDa. It had maximal activity at 45 degrees C and pH 9.0, and was completely inactivated in the presence of phenylmethanesulfonyl fluoride or Zn2+. DaaA had hydrolyzing activity toward D-amino-acid amides with aromatic or hydrophobic side chains, but did not act on the substrates for the DD-peptidase and beta-lactamase, despite their sequence similarity to DaaA. The characteristics of the recombinant DaaA are similar to those found for the native enzyme partially purified from O. anthropi SV3.  相似文献   

8.
Summary A d-hydantoinase was expressed in the soluble form by a recombinant E. coli strain, pE-HDT/E. coli BL21 in LB medium. The enzymatic activity of cultured cells reached 5.2–6.5 IU/ml culture at a cell turbidity of 10 at 600 nm. The expressed enzyme was efficiently purified by three steps, ammonium sulfate fractionation, Phenyl-Sepharose hydrophobic interaction chromatography and Sephacryl S-200 size-exclusion chromatography. With the above purification process, the enzyme was purified to more than 95% purity as estimated by SDS-PAGE. The overall recovery of enzymatic activity was 54.4% and the specific activity for substrate dl-hydantoin achieved 48 U/mg. The purified enzyme appeared as a dimer with a molecular mass of 103 kDa, as measured by size-exclusion chromatography. The enzyme was stable from pH 6 to 12 with an optimum pH at 9.5 The optimum temperature of the enzyme was 45 °C and it activity was rapidly lost over 55 °C. Divalent metal ions, including Co2+, Mn2+ and Ni 2+ ions obviously enhanced the enzymatic activity, while Zn2+ ion had a slight inhibitory effect. In addition, the dissociation of purified enzyme into its subunits occurred in the presence of 1 mM Zn2+ ion. The effect of different metal ions on the d-hydantoinase activation/attenuation was discussed.  相似文献   

9.
We have investigated the interaction between calcium ions and erythrocyte transglutaminase and the enzyme activation. The binding involves both high and low affinity sites, but only the former ones are relevant for activation. The binding of calcium and the activation are modified by treatment with NBD-Cl and with PLP suggesting the presence of cysteine and lysine residues at the high affinity binding sites. The interaction of the enzyme with calcium is not calmodulin dependent and is easily detected as a shift in electrophoretic mobility in the presence of SDS.  相似文献   

10.
Human epidermal transglutaminase. Preparation and properties.   总被引:3,自引:0,他引:3  
A transglutaminase from human hair follicle-free epidermis was purified to homogeneity using gel filtration and ion exchange chromatography. The enzyme had an apparent Mr = 51,000 +/- 2,000 by sodium dodecyl sulfate electrophoresis, 100,000 +/- 5,000 by discontinuous gel electrophoresis, and 50,000 +/- 2,000 by gel filtration in Bio-Gel A-0.5m agarose. The enzyme cross-linked Factor XIII-free fibrinogen forming gamma dimers and alpha polymers. Either calcium or strontium was necessary for enzyme activity. In the presence of calcium, enzyme activity was increased by heating at 56 degrees or by treating with dimethylsulfoxide. Activation required calcium and occurred in the presence of serine protease inhibitors. The activated and native enzyme had apparently identical mobilities in acrylamide disc electrophoresis and sodium dodecyl sulfate electrophoresis. The Km values for two substrates in the reaction, casein and putrescine, were very similar for the native and the activated enzyme. The activated enzyme had a larger elution volume on Bio-Gel A-0.5m in the presence of calcium than did the native enzyme. The detailed mechanism of activation remains to be determined.  相似文献   

11.
Phospholipase D (PLD), an enzyme predestined for the preparation of new phospholipids, was isolated from cabbage and purified in a highly efficient way by using a combination of hydrophobic chromatography and a specific calcium effect. In the presence of calcium ions (50mM), PLD is bound from the crude enzyme solution to Octyl-Sepharose and subsequently selectively eluted by removing the calcium ions. The obtained enzyme is electrophoretically pure (95%), its molecular mass and isoelectric point were determined to be 87,000 Da and 4.7, respectively. The purified enzyme was kinetically characterized by use of mixed phosphatidylcholine-SDS micelles as well as the short-chain lecithins 1,2-dihexanoyl- and 1,2-diheptanoyl-sn-glycero-3-phosphocholine as substrates. A hyperbolic upsilon/[S]-characteristic was obtained for the mixed micellar system, whereas the upsilon/[S] curves of the short-chain lecithins reflect the dependence of velocity on the physical state of the substrate. A small velocity increase was observed up to a critical substrate concentration near the critical micelle concentration, from where the velocity increases hyperbolically.  相似文献   

12.
Guanosine 5'-triphosphate (GTP) was found to inhibit guinea pig liver transglutaminase activity as measured by [3H]putrescine incorporation into casein. GDP and GTP-gamma-S also inhibited enzyme activity (GTP-gamma-S greater than GTP greater than GDP). Kinetic studies showed that GTP acted as a reversible, noncompetitive inhibitor and that CaCl2 partially reversed GTP inhibition. GTP also inhibited rat liver and adult bovine aortic endothelial cell transglutaminase, but did not inhibit Factor XIIIa activity. Guanosine monophosphate (GMP), cyclic GMP, and polyguanylic acid did not inhibit enzyme activity. Guinea pig liver transglutaminase adsorbed well to GTP-agarose affinity columns, but not to CTP-agarose columns, and the binding was inhibited by the presence of calcium ions. Specific binding of GTP to transglutaminase was demonstrated by photoaffinity labeling with 8-azidoguanosine 5'-[gamma-32P] triphosphate, which was inhibited by the presence of GTP or CaCl2. GTP inhibited trypsin proteolysis of guinea pig liver transglutaminase without affecting the trypsin proteolysis of chromogenic substrates. Proteolytic protection was reversed by the addition of calcium. This study demonstrates that GTP binds to transglutaminase and that both GTP and calcium ions function in concert to regulate transglutaminase structure and function.  相似文献   

13.
The soluble acylase I from rat kidney was purified to homogeneity using a five-step procedure. As the resulting protein was found to have a relative molecular mass of 125 kDa based on size-exclusion chromatography and 44 kDa based on SDS/PAGE, the native protein was taken to consist of three subunits. The amino-acid sequence of a peptide resulting from limited proteolysis of the polypeptide chain with proteinase K, which was determined by microsequencing (RHEFHALRAGFALDEGLA), was found to be very similar to the corresponding sequence of porcine kidney acylase I. However, as N-furyl-acryloyl-L-methionine, a synthetic substrate for porcine acylases, was not hydrolyzed by the rat enzyme, it was suggested that the polypeptide chain might differ in other respects from those of the other acylases I. A full length cDNA coding for the rat kidney acylase I was therefore isolated and found to contain a 1224-bp open reading frame encoding a protein consisting of 408 amino-acid residues, which corresponded to a calculated molecular mass of 45 847 Da per subunit. The deduced amino-acid sequence showed 93.6% and 87.2% identity with that of the human liver and porcine kidney, respectively.  相似文献   

14.
R E West  J Moss 《Biochemistry》1986,25(24):8057-8062
Turkey erythrocytes contain NAD:arginine mono-ADP-ribosyltransferases which, like cholera toxin and Escherichia coli heat-labile enterotoxin, catalyze the transfer of ADP-ribose from NAD to proteins, to arginine and other low molecular weight guanidino compounds, and to water. Two such ADP-ribosyltransferases, A and B, have been purified from turkey erythrocyte cytosol. To characterize further the class of NAD:arginine ADP-ribosyltransferases, the particulate fraction was examined; 40% of erythrocyte transferase activity was localized to the nucleus and cell membrane. Transferase activity in a salt extract of a thoroughly washed particulate preparation was purified 36,000-fold by sequential chromatography on phenyl-Sepharose, (carboxymethyl) cellulose, concanavalin A-Sepharose, and NAD-agarose. Subsequent DNA-agarose chromatography separated two activities, termed transferases C and A', which were localized to the membrane and nucleus, respectively. Transferase C, the membrane-associated enzyme, was distinguished from the cytosolic enzymes by a relative insensitivity to salt and histone; transferase C was stimulated 2-fold by 300 mM NaCl in contrast to a 20-fold stimulation of transferase A and a 50% inhibition of transferase B. Similarly, histones, which stimulate transferase A 20-fold, enhanced transferase C activity only 2-fold. Transferase A', the nuclear enzyme, was retained on DNA-agarose. It was similar to transferase A in salt and histone sensitivity. Gel permeation chromatography showed slight molecular mass differences among the group of enzymes: A, 24,300 daltons (Da); B, 32,700 Da; C, and A', 25,500 Da. The affinities of transferase C for NAD and agmatine were similar to those of the cytosolic transferases A and B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

16.
A microorganism producing transglutaminase was screened as an indication of hydroxamate- forming activity. The microbial transglutaminase was purified from the culture filtrate of the strain, S- 8112, which was supposed to belong to the genus Streptoverticillium. The molecular weight of the purified enzyme was found to be about 40,000 on SDS-polyacrylamide gel electrophoresis, the isoelectric point 8.9 and the optimal pH of the reaction 6~7. The present enzyme requires no calcium ions for its activity. Thus, it clearly differs from known transglutaminases derived from mammalian organs, which have been defined as calcium-dependent enzymes.  相似文献   

17.
GTP hydrolysis by guinea pig liver transglutaminase   总被引:4,自引:0,他引:4  
Homogeneous guinea pig liver transglutaminase was purified from a commercially available enzyme preparation by affinity chromatography on GTP-agarose. The purified transglutaminase exhibited a single band of apparent Mr = 80,000 on sodium dodecyl sulfate polyacrylamide gel and Western blotting and had enzyme activity of both transglutaminase and GTPase. The guinea pig liver transglutaminase has an apparent Km value of 4.4 microM for GTPase activity. GTPase activity was inhibited by guanine nucleotides in order GTP-gamma-S greater than GDP, but not by GMP. These results demonstrate that purified guinea pig liver transglutaminase catalyzes GTP hydrolysis.  相似文献   

18.
Cystatin, the protein inhibitor of cysteine proteinases from chicken egg white was purified by a new method. The two major forms with pI 6.5 (Peak I) and 5.6 (Peak II) were separated. Molecular masses of both forms are approx. 12700 Da as determined by gel chromatography; Form A from Peak I has a molecular mass of 12191 Da as calculated from its amino-acid sequence. The complete amino-acid sequence of Form A was determined by automated solid-phase Edman degradation of the whole inhibitor and its cyanogen bromide fragments. It contains 108 amino-acid residues. Form B from Peak II represents an elongation of Form A by 8 amino-acid residues at the N-terminus. Cystatin contains four cysteine residues, presumably forming two disulphide bridges. Comparison of the amino-acid sequences and near ultraviolet circular dichroism spectra of stefin, the cysteine proteinase inhibitor from human granulocytes, and cystatin shows that the two proteins are entirely different. According to the primary structures, probably neither proteinase inhibitor is involved in a thiol-disulphide exchange mechanism in the interaction with its target enzyme.  相似文献   

19.
A new and efficient method for the purification of levansucrase from cell-free extracts of a flocculant mutant of Zymomonas mobilis ATCC 10988 was developed. Levansucrase activity was almost completely recovered and purified by a factor of 15 after precipitation with 0.1 m MnCl2 as a first capturing step. The enzyme was homogeneously purified by ultrafiltration and anion-exchange chromatography and exhibited a levan-forming activity of 39.2 U mg−1. The native enzyme formed large aggregates with an apparent molecular mass of more than 106 Da as determined by size-exclusion chromatography, whereas denaturing SDS-PAGE indicated an apparent molecular mass of 50 kDa for the subunits. Received: 10 October 2000 / Accepted: 17 November 2000  相似文献   

20.
We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13) during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km) of the enzyme for the substrates N'N' dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5 mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号