首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two isozymes of porcine aromatase, the placental and the blastocyst forms, were expressed in CHO cells using the mammalian cell transfection method. Using an 'in-cell' assay (a 3H-water release method), catalytic parameters of the porcine placental aromatase were found to be very similar to those of the human enzyme; however, the activity of the blastocyst isozyme was found to be one-thirtieth that of the placental isozyme. Product isolation assay (using testosterone as the substrate) revealed that the major steroid products were 17beta-estradiol and 19-nortestosterone. The product ratio of estradiol/19-nortestosterone was found to be 94 : 6 for the porcine placental form, 6 : 94 for the porcine blastocyst form, and 92 : 8 for the human wild-type aromatase. Therefore, the porcine blastocyst aromatase isozyme catalyzes mainly androgen 19-desmethylation rather than aromatization. In addition, inhibition profile analyses on the placental and blastocyst isozymes were performed using three steroidal inhibitors [4-hydroxyandro-stenedione (4-OHA), 7alpha-(4'-amino)phenylthio-1, 4-androstandiene-3,17-dione (7alpha-APTADD), and bridge (2, 19-methyleneoxy) androstene-3,17-dione (MDL 101,003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)]. While the two isozymes of porcine aromatase share 93% amino-acid sequence identity, our results indicate that the two porcine aromatase isozymes have distinct responses to various aromatase inhibitors.  相似文献   

2.
4-hydroxy-4-androstene-3,17-dione (4-OHA) has been shown to be a potent inhibitor of aromatase activity. It is effective in the control of estrogen-dependent processes in female subjects and may potentially be useful in the treatment of estrogen-dependent processes in men. Human foreskin fibroblasts grown in cell culture provide a model to investigate the effects of 4-OHA on extraglandular aromatase activity as well as the ability of the compound to influence androgen receptor binding and the 5 alpha-reduction of testosterone (T). Initial experiments were carried out to determine the potency of 4-OHA in genital skin fibroblasts by incubating cells with 4-OHA over a range of concentrations. When aromatase activity was determined at a substrate concentration close to the apparent Km of the enzyme, a 44% inhibition of enzyme activity occurred at a mean concentration of 5 nM 4-OHA. Enzyme kinetic studies analyzed by Eadie-Hofstee plots demonstrated competitive inhibition by 4-OHA with a mean apparent Ki of 2.7 nM. When 5 alpha-reductase activity was determined in the presence of 200 nM [3H]T, in the absence or presence of 4-OHA, a 50% inhibition of enzyme activity occurred at an inhibitor concentration of 3 microM. In androgen receptor binding studies, 4-OHA possessed 1% of the affinity of dihydrotestosterone (DHT) for [3H]DHT binding sites. In summary: 4-OHA is a potent and specific inhibitor of aromatase activity in human genital skin fibroblasts, the affinity of the enzyme for 4-OHA being greater than its affinity for the substrate, androstenedione. The influence of 4-OHA on 5 alpha-reductase activity and androgen receptor binding is minimal.  相似文献   

3.
Site-directed mutagenesis was utilized to identify binding sites for NAD(P)H and dicumarol in rat liver NAD(P)H:quinone oxidoreductase (NQOR, EC 1.6.99.2). The mutant cDNA clones were generated by a procedure based on the polymerase chain reaction and were expressed in Escherichia coli. The mutant enzymes were purified to apparent homogeneity as judged by SDS-polyacrylamide gel electrophoresis and were found to contain 2 FADs/enzyme molecule identical with that of the wild-type NQOR. Purified mutant enzymes Y128D, G150F, G150V, S151F, and Y155D showed dramatic decreases in activities in the reduction of dichlorophenolindophenol in comparison with the activities of the wild-type enzyme, whereas the activities of F124L, T127V, T127E, Y128V, Y128F, S151A, and Y155V were similar to those of NQOR. Enzyme kinetic analysis revealed that the Km values of T127E, Y128D, G150F, G150V, S151F, and Y155D were, respectively, 4-, 2-, 13-, 5-, 26-, and 19-fold higher than the Km of NQOR for NADPH, and were, respectively, 2-, 3-, 7-, 3-, 20-, and 11-fold higher than that of NQOR for NADH. The kcat values of Y128D, G150F, and G150V were also much lower than those of NQOR, but the kcat values of other mutants were similar to those of the wild-type enzyme. The Km values of the mutants for dichlorophenolindophenol were the same or slightly higher than that of NQOR. The apparent inhibition constants (Ki) for dicumarol on Y128V and F124L were elevated 12 and 8 times, respectively. Similar, but smaller, changes on Ki for 4-hydroxycoumarin were also observed. This study demonstrated that residues Gly150, Ser151, and Tyr155 in the glycine-rich region of NQOR are essential for NADPH and NADH binding and Tyr128 is important for dicumarol binding. Based on the results of the study, it is proposed that the glycine-rich region of the enzyme, along with other residues around the region, forms a beta sheet-turn-alpha helix structure important for the binding of the pyrophosphate group of NADPH and NADH.  相似文献   

4.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

5.
Residues D271, H192, H302 and N300 of L-3,4-dihydroxyphenylalanine decarboxylase (DDC), a homodimeric pyridoxal 5'-phosphate (PLP) enzyme, were mutated in order to acquire information on the catalytic mechanism. These residues are potential participants in catalysis because they belong to the common PLP-binding structural motif of group I, II and III decarboxylases and other PLP enzymes, and because they are among the putative active-site residues of structural modelled rat liver DDC. The spectroscopic features of the D271E, H192Q, H302Q and N300A mutants as well as their dissociation constants for PLP suggest that substitution of each of these residues causes alteration of the state of the bound coenzyme molecule and of the conformation of aromatic amino acids, possibly in the vicinity of the active site. This supports, but does not prove, the possibility that these residues are located in the coenzyme-binding cleft. Interestingly, mutation of each residue generates an oxidative decarboxylase activity towards L-3,4-dihydroxyphenylalanine (L-Dopa), not inherent in the wild-type in aerobiosis, and reduces the nonoxidative decarboxylase activity of L-Dopa from 3- to 390-fold. The partition ratio between oxidative and nonoxidative decarboxylation ranges from 5.7 x 10(-4) for N300A mutant to 946 x 10(-4) for H302Q mutant. Unlike wild-type enzyme, the mutants catalyse these two reactions to the same extent either in the presence or absence of O2. In addition, all four mutants exhibit an extremely low level of the oxidative deaminase activity towards serotonin with respect to wild-type. All these findings demonstrate that although D271, H192, H302 and N300 are not essential for catalysis, mutation of these residues alters the nature of catalysis. A possible relationship among the integrity of the PLP cleft, the productive binding of O2 and the transition to a closed conformational state of DDC is discussed.  相似文献   

6.
Rat liver fructose-2,6-bisphosphatase, which catalyzes its reaction via a phosphoenzyme intermediate, is evolutionarily related to the phosphoglycerate mutase enzyme family (Bazan, F., Fletterick, R., and Pilkis, S.J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). Arg-7 and Arg-59 of the yeast phosphoglycerate mutase have been postulated to be substrate-binding residues based on the x-ray crystal structure. The corresponding residues in rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, Arg-257 and Arg-307, were mutated to alanine. The Arg257Ala and Arg307Ala mutants and the wild-type enzyme were expressed in Escherichia coli and then purified to homogeneity. Both mutant enzymes had identical far and near UV circular dichroism spectra and 6-phosphofructo-2-kinase activities when compared with the wild-type enzyme. However, the Arg257Ala and Arg307Ala mutants had altered steady state fructose-2,6-bisphosphatase kinetic properties; the Km values for fructose-2,6-bisphosphate of the Arg257Ala and Arg307Ala mutants were increased by 12,500- and 760-fold, whereas the Ki values for inorganic phosphate were increased 7.4- and 147-fold, respectively, as compared with the wild-type values. However, the Ki values for the other product, fructose-6-phosphate, were unchanged for the mutant enzymes. Although both mutants exhibited parallel changes in kinetic parameters that reflect substrate/product binding, they had opposing effects on their respective maximal velocities; the maximal velocity of Arg257Ala was 11-fold higher, whereas that for Arg307Ala was 700-fold lower, than that of the wild-type enzyme. Pre-steady state kinetic studies demonstrated that the rate of phosphoenzyme formation for Arg307Ala was at least 4000-fold lower than that of the wild-type enzyme, whereas the rate for Arg257Ala was similar to the wild-type enzyme. Furthermore, consistent with the Vmax changes, the rate constant for phosphoenzyme breakdown for Arg257Ala was increased 9-fold, whereas that for Arg307Ala was decreased by a factor of 500-fold, as compared with the wild-type value. The results indicate that both Arg-257 and Arg-307 interact with the reactive C-2 phospho group of fructose 2,6-bisphosphate and that Arg-307 stabilizes this phospho group in the transition state during phosphoenzyme breakdown, whereas Arg-257 stabilizes the phospho group of the ground state phosphoenzyme intermediate.  相似文献   

7.
2,2-Dimethyl-4-hydroxy-4-androstene-3,17-dione (4) has been synthesized and has been shown to be a powerful competitive inhibitor of aromatase (Ki = 11.4 nM). However, compound 4 does not cause time-dependent loss of enzyme activity, in contrast to the unmethylated parent compound, 4-OHA.  相似文献   

8.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

9.
In male subjects, peripheral aromatization of androgens accounts for most of the estrogen production, and skin is an important site of such enzymatic activity. We have studied the effects of a mechanism-based, irreversible aromatase inhibitor, 10-(2-propynyl)-estr-4-ene-3,17-dione (MDL 18,962) on androgen action and metabolism in cultured human foreskin fibroblasts. Cells were incubated simultaneously in the presence of substrate, androstenedione, and inhibitor, MDL 18,962. Aromatase activity was linear with time up to 3 h of incubation at 37 degrees C in the absence and presence of 1.0-10 nM inhibitor. The IC50 for four different cell strains ranged from 4.0 to 8.6 nM MDL 18,962. Kinetic analysis of competitive inhibition by the Eadie-Hofstee method yielded an apparent Ki of 2.75 nM for the inhibitor. Preincubation of cells with MDL 18,962 resulted in irreversible inhibition of aromatase activity which was time- and concentration-dependent. We calculated a Ki of 7.6 nM for MDL 18,962. Preincubation of cells with 25 nM MDL 18,962 suppressed enzyme activity for up to 6 h following removal of the inhibitor, before a return of enzyme activity due to synthesis of new enzyme. MDL 18,962 (0.2-20 microM) did not influence the 5 alpha-reduction of testosterone (200 nM). In addition, binding of dihydrotestosterone (2 nM) to androgen receptors was not affected by MDL 18,962 (25-1000 nM). In summary, MDL 18,962 is a specific, high potency inhibitor of aromatase. By virtue of its high binding affinity to the enzyme active site, it competes very effectively with substrate, resulting in irreversible inactivation of aromatase.  相似文献   

10.
Enzyme-activated inhibitors of aromatase would result in effective medicinal agents for modulating estrogen-dependent processes and thus may be useful in controlling reproductive processes and in treating estrogen-dependent diseases such as breast and endometrial cancer. A potential enzyme-activated inhibitor of aromatase, 7 alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione (7 alpha-APTADD), was synthesized and examined in vitro with placental aromatase. Under initial velocity conditions, 7 alpha-APTADD exhibited high affinity for the enzyme and is a potent inhibitor of aromatase with an apparent Ki of 9.9 +/- 1.0 nM and with a Km for androstenedione of 52.5 +/- 5.9 nM. This inhibitor produced a rapid time-dependent, first-order inactivation of aromatase in the presence of NADPH, while no inactivation of aromatase activity was observed in the absence of NADPH. Protection of aromatase from inactivation was observed when the substrate, androstenedione, was included in the incubation mixture containing enzyme, inhibitor, and NADPH. On the other hand, nucleophilic trapping agents such as cysteine did not protect the enzyme from inactivation by 7 alpha-APTADD. Additionally, second enzyme pulse experiments demonstrated identical rates of inactivation, suggesting that the enzyme-activated inhibitor was not being released from the active site of the enzyme. The apparent Kinact for 7 alpha-APTADD is 159 +/- 21 nM and represents the inhibitor concentration required to produce a half-maximal rate of inactivation. The half-time of inactivation at infinite inhibitor concentration was 1.38 +/- 0.92 min and is the most rapid enzyme-activated aromatase inhibitor reported to date. Thus, 7 alpha-APTADD is a potent enzyme-activated inhibitor of aromatase, exhibiting high affinity and rapid inactivation. This inhibitor will be useful in probing the biochemistry of aromatase and should also serve as an effective medicinal agent for the treatment of estrogen-dependent cancers.  相似文献   

11.
The Gin residue at amino acid position 102 ofBacillus stearothermophilus lactate dehydrogenase was replaced with Ser, Thr, Tyr, or Phe to investigate the effect on substrate recognition. The Q102S and Q102T mutant enzymes were found to have a broader range of substrate specificity (measured byk cat/K m) than the wild-type enzyme. However, it is evident that either Ser or Thr at position 102 are of a size able to accommodate a wide variety of substrates in the active site and substrate specificity appears to rely largely on size discrimination in these mutants. The Q102F and Q102Y mutant enzymes have low catalytic efficiency and do not show this relaxed substrate specificity. However, their activities are restored by the presence of an aromatic substrate. All of the enzymes have a very low catalytic efficiency with branched chain aliphatic substrates.Abbreviations used BSLDH Bacillus stearothermophilus lactate dehydrogenase - FBP fructose-1,6-bisphosphate - HP hydroxypyruvate - KB ketobutyrate - KC ketocaproate - KV ketovalerate - MDH malate dehydrogenase - PP phenylpyruvate - PYR pyruvate - RBE relative binding energy  相似文献   

12.
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.  相似文献   

13.
Aitken SM  Kirsch JF 《Biochemistry》2004,43(7):1963-1971
Cystathionine beta-synthase (CBS) effects the condensation of l-serine with l-homocysteine to form l-cystathionine. A series of active-site mutants, T81A, S82A, T85A, Q157A/E/H, and Y158F, was constructed to investigate effects on catalysis and reaction specificity in yeast CBS (yCBS). The effects of these mutations on the k(cat)/K(m)(L-Ser) for the beta-replacement reaction range from a reduction of only 3-fold for Y158F to below detectable levels for the Q157A and Q157E mutants. The order of importance of these residues to the beta-replacement reaction is Gln157 >or= Thr81 > Ser82 > Thr85 approximately Tyr158. All seven of the mutant enzymes catalyze a competing beta-elimination reaction, in which L-Ser is hydrolyzed to NH(3) and pyruvate. The ping-pong mechanism of CBS was thus expanded to include the latter reaction for these mutants. This activity is not detectable for wild-type yCBS, suggesting that the mutations result in a shift in the equilibrium between the open and the closed conformations of the active site of yCBS-substrate complexes. The Q157H and Y158F mutants additionally suffer suicide inhibition via a mechanism in which the released aminoacrylate intermediate covalently attacks the internal aldimine of the enzyme.  相似文献   

14.
In myocardium, the 90-kDa ribosomal S6 kinase (RSK) is activated by diverse stimuli and regulates the sarcolemmal Na(+)/H(+) exchanger through direct phosphorylation. Only limited information is available on other cardiac RSK substrates and functions. We evaluated cardiac myosin-binding protein C (cMyBP-C), a sarcomeric regulatory phosphoprotein, as a potential RSK substrate. In rat ventricular myocytes, RSK activation by endothelin 1 (ET1) increased cMyBP-C phosphorylation at Ser(282), which was inhibited by the selective RSK inhibitor D1870. Neither ET1 nor D1870 affected the phosphorylation status of Ser(273) or Ser(302), cMyBP-C residues additionally targeted by cAMP-dependent protein kinase (PKA). Complementary genetic gain- and loss-of-function experiments, through the adenoviral expression of wild-type or kinase-inactive RSK isoforms, confirmed RSK-mediated phosphorylation of cMyBP-C at Ser(282). Kinase assays utilizing as substrate wild-type or mutated (S273A, S282A, S302A) recombinant cMyBP-C fragments revealed direct and selective Ser(282) phosphorylation by RSK. Immunolabeling with a Ser(P)(282) antibody and confocal fluorescence microscopy showed RSK-mediated phosphorylation of cMyBP-C across the C-zones of sarcomeric A-bands. In chemically permeabilized mouse ventricular muscles, active RSK again induced selective Ser(282) phosphorylation in cMyBP-C, accompanied by significant reduction in Ca(2+) sensitivity of force development and significant acceleration of cross-bridge cycle kinetics, independently of troponin I phosphorylation at Ser(22)/Ser(23). The magnitudes of these RSK-induced changes were comparable with those induced by PKA, which phosphorylated cMyBP-C additionally at Ser(273) and Ser(302). We conclude that Ser(282) in cMyBP-C is a novel cardiac RSK substrate and its selective phosphorylation appears to regulate cardiac myofilament function.  相似文献   

15.
We have evaluated the binding characteristics of three steroidal inhibitors [4-hydroxyandrostene-dione (4-OHA), 7-(4′-amino)phenylthio-1,4-androstadiene-3,17-dione (7-APTADD), and bridge (2,19-methyleneoxy) androstene-3,17-dione (MDL 101,003)], four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)], and two flavone phytoestrogens (chrysin, and 7,8-dihydroxyflavone) to aromatase through a combination of computer modeling and inhibitory profile studies on the wild-type and six aromatase mutants (I133Y, P308F, D309A, T310S, I395F, and I474Y). We have generated two aromatase models based on the x-ray structures of cytochrome P450-cam and cytochrome P450bm3, respectively. A major difference between the cytochrome P450cam-based and cytochrome P450bm3-based models is in the predicted lengths of helices F and G. In the cytochrome P450cam-based model, helices F and G lie antiparallel and extend across the active-site face of the molecule from one edge to the center, so that the carboxyl-terminal residues of helix F and the N-terminal residues of helix G make a major contribution to the structure of the active site. In the cytochrome P450bm3-based model, both helices are longer and so extend almost all the way across the active-site face of the molecule. Considering the size of the androgen substrate, we evaluated our results mainly based on the cytochrome P450cam model. The mutations involved in this study are thought to be at or near the proposed active site pocket. The inhibitory profile analysis has produced very interesting results and provided a molecular basis as to how seven aromatase inhibitors with different structures bind to the active site of aromatase. Furthermore, the investigation reveals that phytoestrogens bind to the active site of aromatase in a different orientation from that in the estrogen receptor.  相似文献   

16.
Despite the structural similarities between cholesterol oxidase from Streptomyces and that from Brevibacterium, both enzymes exhibit different characteristics, such as catalytic activity, optimum pH and temperature. In attempts to define the molecular basis of differences in catalytic activity or stability, substitutions at six amino acid residues were introduced into cholesterol oxidase using site-directed mutagenesis of its gene. The amino acid substitutions chosen were based on structural comparisons of cholesterol oxidases from Streptomyces and BREVIBACTERIUM: Seven mutant enzymes were constructed with the following amino acid substitutions: L117P, L119A, L119F, V145Q, Q286R, P357N and S379T. All the mutant enzymes exhibited activity with the exception of that with the L117P mutation. The resulting V145Q mutant enzyme has low activities for all substrates examined and the S379T mutant enzyme showed markedly altered substrate specificity compared with the wild-type enzyme. To evaluate the role of V145 and S379 residues in the reaction, mutants with two additional substitutions in V145 and four in S379 were constructed. The mutant enzymes created by the replacement of V145 by Asp and Glu had much lower catalytic efficiency for cholesterol and pregnenolone as substrates than the wild-type enzyme. From previous studies and this study, the V145 residue seems to be important for the stability and substrate binding of the cholesterol oxidase. In contrast, the catalytic efficiencies (k(cat)/K(m)) of the S379T mutant enzyme for cholesterol and pregnenolone were 1.8- and 6.0-fold higher, respectively, than those of the wild-type enzyme. The enhanced catalytic efficiency of the S379T mutant enzyme for pregnenolone was due to a slightly high k(cat) value and a low K(m) value. These findings will provide several ideas for the design of more powerful enzymes that can be applied to clinical determination of serum cholesterol levels and as sterol probes.  相似文献   

17.
BcChi-A, a GH19 chitinase from the moss Bryum coronatum, is an endo-acting enzyme that hydrolyses the glycosidic bonds of chitin, (GlcNAc)(n) [a β-1,4-linked polysaccharide of GlcNAc (N-acetylglucosamine) with a polymerization degree of n], through an inverting mechanism. When the wild-type enzyme was incubated with α-(GlcNAc)2-F [α-(GlcNAc)(2) fluoride] in the absence or presence of (GlcNAc)(2), (GlcNAc)(2) and hydrogen fluoride were found to be produced through the Hehre resynthesis-hydrolysis mechanism. To convert BcChi-A into a glycosynthase, we employed the strategy reported by Honda et al. [(2006) J. Biol. Chem. 281, 1426-1431; (2008) Glycobiology 18, 325-330] of mutating Ser(102), which holds a nucleophilic water molecule, and Glu(70), which acts as a catalytic base, producing S102A, S102C, S102D, S102G, S102H, S102T, E70G and E70Q. In all of the mutated enzymes, except S102T, hydrolytic activity towards (GlcNAc)(6) was not detected under the conditions we used. Among the inactive BcChi-A mutants, S102A, S102C, S102G and E70G were found to successfully synthesize (GlcNAc)(4) as a major product from α-(GlcNAc)(2)-F in the presence of (GlcNAc)(2). The S102A mutant showed the greatest glycosynthase activity owing to its enhanced F(-) releasing activity and its suppressed hydrolytic activity. This is the first report on a glycosynthase that employs amino sugar fluoride as a donor substrate.  相似文献   

18.
Mutant forms of aromatase cytochrome P-450 bearing modifications of amino acid residues Pro308 and Asp309 and expressed in transfected Chinese hamster ovary cells were subjected to kinetic analysis and inhibition studies. The Km for androstenedione for expressed wild type (11.0 +/- 0.3 nM SEM, n = 3) increased 4-, 25- and 31-fold for mutants Pro308Phe, Asp309Asn and Asp309Ala, respectively. There were significant differences in sensitivity among wild type and mutants to highly selective inhibitors of estrogen biosynthesis. 4-Hydroxyandrostenedione (4-OHA) a strong inhibitor of wild type aromatase activity (IC50 = 21 nM and Ki = 10 nM), was even more effective against mutant Pro308Phe (IC50 = 13 nM and Ki = 2.8 nM), but inhibition of mutants Asp309Asn and Asp309Ala was considerably less (IC50 = 345 and 330 nM and Ki = 55 and 79 nM, respectively). Expressed wild type aromatase and Pro308Phe aromatase were strongly inhibited by CGS 16949A (IC50 = 4.0 and 4.6 nM, respectively) whereas mutants Asp309Asn and Asp309Ala were markedly less sensitive (IC50 = 140 and 150 nM, respectively). CGS 18320B produced similar inhibition. Kinetic analyses produced Ki = 0.4 nM for CGS 16949A inhibition of wild type versus 1.1, 37 and 58 nM, respectively, against Pro308Phe, Asp309Asn and Asp309Ala. The results demonstrate significant changes in function resulting from single amino acid modifications of the aromatase enzyme. Our data indicate that mutation in Asp309 creates a major distortion in the substrate binding site, rendering the enzyme much less efficient for androstenedione aromatization. The substitution of Pro308 with Phe produces weaker affinity for androstenedione in the substrate pocket, but this alteration favors 4-OHA binding. Similarly, mutant Pro308Phe exhibits a slightly greater sensitivity to inhibition by CGS 18320B than does the wild type. These results indicate that residues Pro308 and Asp309 play critical roles in determining substrate specificity and catalytic capability in aromatase.  相似文献   

19.
Lee LV  Vu MV  Cleland WW 《Biochemistry》2000,39(16):4808-4820
On the basis of (13)C and deuterium isotope effects, L-ribulose-5-phosphate 4-epimerase catalyzes the epimerization of L-ribulose 5-phosphate to D-xylulose 5-phosphate by an aldol cleavage to the enediolate of dihydroxyacetone and glycolaldehyde phosphate, followed by rotation of the aldehyde group and condensation to the epimer at C-4. With the wild-type enzyme, (13)C isotope effects were 1.85% at C-3 and 1.5% at C-4 at pH 7, with the values increasing to 2.53 and 2.05% at pH 5.5, respectively. H97N and Y229F mutants at pH 7 gave values of 3.25 and 2.53% at C-3 and 2. 69 and 1.99% at C-4, respectively. Secondary deuterium isotope effects at C-3 were 2.5% at pH 7 and 3.1% at pH 5.5 with the wild-type enzyme, and 4.1% at pH 7 with H97N. At C-4, the corresponding values were 9.6, 14, and 19%. These data suggest that H97N shows no commitments, while the wild-type enzyme has an external commitment of approximately 1.4 at pH 7 and an internal commitment independent of pH of approximately 0.6. The Y229 mutant shows only the internal commitment of 0.6. The sequence of the epimerase is similar to those of L-fuculose-1-phosphate and L-rhamnulose-1-phosphate aldolases for residues in the active site of L-fuculose-1-phosphate aldolase, suggesting that Asp76, His95, His97, and His171 of the epimerase may be metal ion ligands, and Ser44, Gly45, Ser74, and Ser75 may form a phosphate binding pocket. The pH profile of V/K for L-ribulose 5-phosphate is bell-shaped with pK values of 5.94 and 8.24. The CD spectra of L-ribulose 5-phosphate and D-xylulose 5-phosphate differ sufficiently that the epimerization reaction can be followed at 300 nm.  相似文献   

20.
The functional residues of z-class glutathione S-transferase were identified by screening inactive point mutants from a random mutagenesis library. First, a random mutant library was constructed using error-prone polymerase chain reaction, and then candidate inactive mutants were screened by a high-throughput colorimetric assay. Twenty-five mutants were obtained, and 12 that formed inclusion bodies were discarded. The remaining 13 mutants that expressed soluble protein were used for accurate quantification of enzymatic activity and sequencing. The mutants W15R, C19Y, R22H/K83E, P61S, S73P, S109P, and Q112R were found to have activity lower than 1% of the wild-type and were considered as “inactive mutants”, whereas the mutants K83E, Q102R, and L147F still have a large fraction of the activity and were thus considered as “partially inactivated mutants”. Molecular modeling experiments disclosed that mutations resulting in inactivation of the enzyme were found in or near the binding pocket, whereas mutations resulting in partial inactivation were distant from both substrates. The role of the residue Ser73 in the enzyme was verified by site-directed mutagenesis. The result suggested that screening inactive point mutants from a random mutagenesis library is an efficient way of identifying functional residues in enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号