首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Endothelin-1 (ET-1) induces positive inotropy (enhanced contractility) in cardiac muscle, but establishing underlying cellular mechanisms has been controversial in part because of a growing number of signaling pathways and end effectors targeted by ET-1. Here we present evidence that ET-1 induces positive inotropism in ventricular tissue by increasing both systolic Ca2+ and myofilament Ca2+ sensitivity. To examine the roles of PKC-δ and PKC-ε in these acute responses to ET-1, kinase inactive dominant negative PKC (dn-PKC) constructs were expressed in adult rat ventricular myocytes. Yellow fluorescent protein (YFP) was fused to dn-PKC constructs to visualize expression and localization of dn-PKC in living myocytes. Due to an alanine to glutamate mutation in the pseudosubstrate site, dn-PKCs constitutively translocated to anchoring sites and were unaffected by agonist or phorbol ester treatment. Dn-PKC-δ-YFP mainly distributed at Z-lines and at intercalated disks in adult myocytes, whereas dn-PKC-ε-YFP stained the surface sarcolemma, T-tubules/Z-lines and perinuclear region. Myocytes expressing dn-PKC-δ-YFP showed normal systolic Ca2+ and contractile responses to ET-1. In contrast, the entire ensemble of ET-1 responses was blocked in myocytes expressing dn-PKC-ε-YFP including increased Ca2+ transients, enhanced myofilament Ca2+ sensitivity, and positive inotropy. This report provides direct evidence that PKC-ε is activated early and robustly following ET-1 stimulation and thus mediates multiple intracellular changes underlying the acute actions of ET-1 on myocardium.  相似文献   

2.
Endothelin-1 (ET-1) is an autocrine factor in the mammalian heart important in enhancing cardiac performance, protecting against myocardial ischemia, and initiating the development of cardiac hypertrophy. The ETA receptor is a seven-transmembrane G-protein-coupled receptor whose precise subcellular localization in cardiac muscle is unknown. Here we used fluorescein ET-1 and 125I-ET-1 to provide evidence for ET-1 receptors in cardiac transverse tubules (T-tubules). Moreover, the ETA receptor and downstream effector phospholipase C-beta 1 were co-localized within T-tubules using standard immunofluorescence techniques, and protein kinase C (PKC)-epsilon-enhanced green fluorescent protein bound reversibly to T-tubules upon activation. Localized photorelease of diacylglycerol further suggested compartmentation of PKC signaling, with release at the myocyte "surface" mimicking the negative inotropic effects of bath-applied PKC activators and "deep" release mimicking the positive inotropic effect of ET-1. The functional significance of T-tubular ET-1 receptors was further tested by rendering the T-tubule lumen inaccessible to bath-applied ET-1. Such "detubulated" cardiac myocytes showed no positive inotropic response to 20 nM ET-1, despite retaining both a nearly normal twitch response to field stimulation and a robust positive inotropic response to 20 nm isoproterenol. We propose that ET-1 enhances myocyte contractility by activating ETA receptor-phospholipase C-beta 1-PKC-epsilon signaling complexes preferentially localized in cardiac T-tubules. Compartmentation of ET-1 signaling complexes may explain the discordant effects of ET-1 versus bath applied PKC activators and may contribute to both the specificity and diversity of the cardiac actions of ET-1.  相似文献   

3.
Endothelin-1 (ET-1) has acute positive inotropic effects, but consequences of chronically increased ET-1 on contractile function of cardiac myocytes are largely unknown. In the present study, effects of long-term treatment with ET-1 (10 nM) for 5 days on both force development [force of contraction (FOC)] and kinetics of contraction were determined in heart tissue reconstituted from rat cardiac cells. Isometric force was measured in response to cumulative concentrations of Ca(2+) and isoprenaline. ET-1 augmented basal FOC by 64 +/- 11% (P < 0.05), which was associated with a significantly blunted contractile response to Ca(2+) and isoprenaline. Moreover, ET-1 significantly prolonged relaxation (62 +/- 3 vs. 53 +/- 2 ms). Selective ET(A) (BQ-123) and ET(B) receptor blockade (BQ-788) demonstrated that effects of ET-1 on contractile function were mediated through the ET(A) receptor subtype. Effects of ET-1 were prevented by cotreatment with either Ro31-8425, a PKC inhibitor, or dimethylamiloride, an inhibitor of the Na(+)/H(+) exchanger. In contrast to long-term ET-1 treatment, no changes in contractile parameters were observed after ET-1 treatment for 3 h before force measurement. These data suggest that chronic ET-1 stimulation has dual effects on contractility: improvement of basal force but impairment of twitch kinetics and inotropic responsiveness to beta-adrenoceptor stimulation. The signaling pathways involved include ET(A) receptors, PKC, and the Na(+)/H(+) exchanger. The present in vitro findings raise the possibility that ET-1 may exert both adaptive and maladaptive effects in the failing myocardium in which local accumulation of ET-1 is present.  相似文献   

4.
Endothelin-1 (ET-1) is a potent G(q)-coupled agonist with important physiological effects on the heart. In the present study, we characterised the effect of prolonged ET-1 stimulation on Ca(2+) signalling within acutely isolated atrial myocytes. ET-1 induced a reproducible and complex sequence of effects, including negative inotropy, positive inotropy and pro-arrhythmic spontaneous Ca(2+) transients (SCTs). The negative and positive inotropic effects correlated with the ability of Ca(2+) to propagate from the subsarcolemmal sites where EC-coupling initiates into the centre of the atrial cells. We examined the spatial and temporal properties of the SCTs and observed them to range from elementary Ca(2+) sparks, flurries of Ca(2+) sparks, to Ca(2+) waves and action potential-evoked global Ca(2+) transients. The positive inotropic effect of ET-1 and its ability to trigger SCTs were mimicked by direct stimulation of InsP(3)Rs. An antagonist of InsP(3)Rs prevented the generation of SCTs and partially reduced the positive inotropy evoked by ET-1. Our data suggest that ET-1 engages multiple signal transduction pathways to provoke a plethora of different responses within an atrial myocyte. Some of the actions of ET-1 appear to be due to stimulation of InsP(3)Rs.  相似文献   

5.
We have previously demonstrated the participation of reactive oxygen species (ROS) in the positive inotropic effect of a physiological concentration of Angiotensin II (Ang II, 1 nM). The objective of the present work was to evaluate the role and source of ROS generation in the positive inotropic effect produced by an equipotent concentration of endothelin-1 (ET-1, 0.4 nM). Isolated cat ventricular myocytes were used to measure sarcomere shortening with a video-camera, superoxide anion (()O(2)(-)) with chemiluminescence, and ROS production and intracellular pH (pH(i)) with epifluorescence. The ET-1-induced positive inotropic effect (40.4+/-3.1%, n=10, p<0.05) was associated to an increase in ROS production (105+/-29 fluorescence units above control, n=6, p<0.05). ET-1 also induced an increase in ()O(2)(-) production that was inhibited by the NADPH oxidase blocker, apocynin, and by the blockers of mitochondrial ATP-sensitive K(+) channels (mK(ATP)), glibenclamide and 5 hydroxydecanoic acid. The ET-1-induced positive inotropic effect was inhibited by apocynin (0.3 mM; 6.3+/-6.6%, n=13), glibenclamide (50 muM; 8.8+/-3.5%, n=6), 5 hydroxydecanoic acid (500 muM; 14.1+/-8.1, n=9), and by scavenging ROS with MPG (2 mM; 0.92+/-5.6%, n=8). ET-1 enhanced proton efflux (J(H)) carried by the Na(+)/H(+) exchanger (NHE) after an acid load, effect that was blocked by MPG. Consistently, the ET-induced positive inotropic effect was also inhibited by the NHE selective blocker HOE642 (5 muM; 9.37+/-6.07%, n=7). The data show that the effect of a concentration of ET-1 that induces an increase in contractility of about 40% is totally mediated by an intracellular pathway triggered by mitochondrial ROS formation and stimulation of the NHE.  相似文献   

6.
High-mobility group box 1 (HMGB1) released from necrotic cells or macrophages functions as a late inflammatory mediator and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients by using fluo-3, and L-type calcium currents by using whole cell perforate configuration of the patch-clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca2+ transient within 5 min (P < 0.01). The immediate negative inotropic effects of HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward l-type calcium currents was also documented by the patch-clamp technique. HMGB1 induced the PKC-epsilon translocation, and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx and suggest that HMGB1 maybe acts as a novel myocardial depressant factor during cardiac injury.  相似文献   

7.
Protein kinase C (PKC) plays an important role in the regulation of uterine artery contractility and its adaptation to pregnancy. The present study tested the hypothesis that PKC differentially regulates alpha(1)-adrenoceptor-mediated contractions of uterine arteries isolated from nonpregnant (NPUA) and near-term pregnant (PUA) sheep. Phenylephrine-induced contractions of NPUA and PUA sheep were determined in the absence or presence of the PKC activator phorbol 12,13-dibutyrate (PDBu). In NPUA sheep, PDBu produced a concentration-dependent potentiation of phenylephrine-induced contractions and shifted the dose-response curve to the left. In contrast, in PUA sheep, PDBu significantly inhibited phenylephrine-induced contractions and decreased their maximum response. Simultaneous measurement of contractions and intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in the same tissues revealed that PDBu inhibited phenylephrine-induced [Ca(2+)](i) and contractions in PUA sheep. In NPUA sheep, PDBu increased phenylephrine-induced contractions without changing [Ca(2+)](i). Western blot analysis showed six PKC isozymes, alpha, beta(I), beta(II), delta, epsilon, and zeta, in uterine arteries, among which beta(I), beta(II), and zeta isozymes were significantly increased in PUA sheep. In contrast, PKC-alpha was decreased in PUA sheep. In addition, analysis of subcellular distribution revealed a significant decrease in the particulate-to-cytosolic ratio of PKC-epsilon in PUA compared with that in NPUA sheep. The results suggest that pregnancy induces a reversal of PKC regulatory role on alpha(1)-adrenoceptor-mediated contractions from a potentiation in NPUA sheep to an inhibition in PUA sheep. The differential expression of PKC isozymes and their subcellular distribution in uterine arteries appears to play an important role in the regulation of Ca(2+) mobilization and Ca(2+) sensitivity in alpha(1)-adrenoceptor-mediated contractions and their adaptation to pregnancy.  相似文献   

8.
Lipid signaling pathways are thought to play a prominent role in transducing extracellular signals into contractile responses in cardiac muscle. Two putative lipid messengers, diacyglycerol and arachidonic acid, can be generated via distinct phospholipases in separate signaling pathways, but certain stimuli cause them to be elevated in parallel. We tested the hypothesis that these lipids function as comessengers in ventricular myocytes by activating protein kinase C (PKC). In previous work, we demonstrated that the diacylglycerol analog dioctanoylglycerol (diC(8)) can be stimulatory or inhibitory toward myocyte twitches depending on how it is applied. Here we report that arachidonic acid and other cis-unsaturated fatty acids (UFA), at concentrations too low for direct effects, synergistically enhance the stimulatory effects of diC(8) and convert inhibitory effects of diC(8) into stimulation of myocyte twitches. Intracellular Ca(2+) transients changed in parallel with twitch amplitude, suggesting regulation of Ca(2+) homeostasis by these lipids. cis-UFA also interacted synergistically with the PKC activator phorbol 12-myristate 13-acetate to promote positive inotropic responses. Responses were blocked by the PKC antagonists chelerythrine chloride, bisindolylmaleimide, and G?-6976. DiC(8) and arachidonic acid also synergistically translocated PKC-epsilon and PKC-alpha in intact myocytes. We propose that PKC integrates diacylglycerol and cis-UFA signals in the heart, resulting in preferential activation of positive inotropic mechanisms.  相似文献   

9.
Sphingosine-1-phosphate (S1P) induces a transient bradycardia in mammalian hearts through activation of an inwardly rectifying K(+) current (I(K(ACh))) in the atrium that shortens action potential duration (APD) in the atrium. We have investigated probable mechanisms and receptor-subtype specificity for S1P-induced negative inotropy in isolated adult mouse ventricular myocytes. Activation of S1P receptors by S1P (100 nM) reduced cell shortening by approximately 25% (vs. untreated controls) in field-stimulated myocytes. S1P(1) was shown to be involved by using the S1P(1)-selective agonist SEW2871 on myocytes isolated from S1P(3)-null mice. However, in these myocytes, S1P(3) can modulate a somewhat similar negative inotropy, as judged by the effects of the S1P(1) antagonist VPC23019. Since S1P(1) activates G(i) exclusively, whereas S1P(3) activates both G(i) and G(q), these results strongly implicate the involvement of mainly G(i). Additional experiments using the I(K(ACh)) blocker tertiapin demonstrated that I(K(ACh)) can contribute to the negative inotropy following S1P activation of S1P(1) (perhaps through G(ibetagamma) subunits). Mathematical modeling of the effects of S1P on APD in the mouse ventricle suggests that shortening of APD (e.g., as induced by I(K(ACh))) can reduce L-type calcium current and thus can decrease the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient. Both effects can contribute to the observed negative inotropic effects of S1P. In summary, these findings suggest that the negative inotropy observed in S1P-treated adult mouse ventricular myocytes may consist of two distinctive components: 1) one pathway that acts via G(i) to reduce L-type calcium channel current, blunt calcium-induced calcium release, and decrease [Ca(2+)](i); and 2) a second pathway that acts via G(i) to activate I(K(ACh)) and reduce APD. This decrease in APD is expected to decrease Ca(2+) influx and reduce [Ca(2+)](i) and myocyte contractility.  相似文献   

10.
Activation of the Na(+)/H(+) exchanger may play an important role in the development of cardiac hypertrophy. Isolated ventricular myocyte studies have suggested that angiotensin II (AII) has direct positive inotropic effect caused by intracellular alkalinization due to increased Na(+)/H(+) exchange, but whether this occurs in the whole heart is unknown. Consequently, we have used non-invasive 31P NMR spectroscopy to determine whether AII stimulation alters energetics or intracellular pH (pH(i)) in the intact beating rabbit heart. Heart rate (HR) and developed pressure (DP) were recorded continuously in isolated perfused rabbit hearts, simultaneously with pH(i) and high energy phosphate metabolite levels measured using 31P NMR spectroscopy. AII (11 nM) increased developed pressure by 14+/-2 mmHg (P<0.05) and increased pH(i) by 0.08+/-0.03 pH units (P<0.05, n=6). There were no significant changes in myocardial phosphocreatine (PCr), ATP or Pi concentrations throughout the protocol. Inhibition of Na(+)/H(+) exchange with 1 microM Hoe642 (n=7) abolished the increase in pH(i), but did not prevent the increase in developed pressure, caused by AII. Inhibition of protein kinase C (PKC) using 25 microM chelerythrine chloride prevented the positive inotropic and alkalinizing effects of AII (n=5). We conclude that the positive inotropic effect of AII is associated with, but not caused by, a decreased proton concentration due to stimulation of Na(+)/H(+) exchange in the whole rabbit heart.  相似文献   

11.
This study tested the hypothesis that protein kinase C (PKC) has dual regulation on norepinephrine (NE)-mediated inositol 1,4, 5-trisphosphate [Ins (1,4,5)P(3)] pathway and vasoconstriction in cerebral arteries from near-term fetal ( approximately 140 gestational days) and adult sheep. Basal PKC activity values (%membrane bound) in fetal and adult cerebral arteries were 38 +/- 4% and 32 +/- 4%, respectively. In vessels of both age groups, the PKC isoforms alpha, beta(I), beta(II), and delta were relatively abundant. In contrast, compared with the adult, cerebral arteries of the fetus had low levels of PKC-epsilon. In response to 10(-4) M phorbol 12,13-dibutyrate (PDBu; PKC agonist), PKC activity in both fetal and adult cerebral arteries increased 40-50%. After NE stimulation, PKC activation with PDBu exerted negative feedback on Ins(1,4,5)P(3) and intracellular Ca(2+) concentration ([Ca(2+)](i)) in arteries of both age groups. In turn, PKC inhibition with staurosporine resulted in augmented NE-induced Ins(1,4,5)P(3) and [Ca(2+)](i) responses in adult, but not fetal, cerebral arteries. In adult tissues, PKC stimulation by PDBu increased vascular tone, but not [Ca(2+)](i). In contrast, in the fetal artery, PKC stimulation was associated with an increase in both tone and [Ca(2+)](i). In the presence of zero extracellular [Ca(2+)], these PDBu-induced responses were absent in the fetal vessel, whereas they remained unchanged in the adult. We conclude that, although basal PKC activity was similar in fetal and adult cerebral arteries, PKC's role in NE-mediated pharmacomechanical coupling differed significantly in the two age groups. In both fetal and adult cerebral arteries, PKC modulation of NE-induced signal transduction responses would appear to play a significant role in the regulation of vascular tone. The mechanisms differ in the two age groups, however, and this probably relates, in part, to the relative lack of PKC-epsilon in fetal vessels.  相似文献   

12.
活性氧介导内皮素-1诱导的培养新生大鼠心肌细胞肥大   总被引:4,自引:0,他引:4  
Wang YZ  Luo JD 《生理学报》2004,56(3):403-406
实验在原代培养的新生大鼠心肌细胞中进行,检测内皮素-1(endothelin-1,ET-1)及其他药物对心肌细胞活性氧(reactiveoxygen species,ROS)产生和心肌细胞肥大的作用,以探讨ROS在ET-1诱导的心肌细胞肥大信号通路中的作用及ROS与蛋白激酶C(protein kinase C,PKC)活化的关系。细胞内ROS水平用ROS敏感的荧光探针2,7-dichlorofluorescin dictate(DCF-DA)反映,心肌细胞肥大通过细胞内RNA含量、细胞内蛋白质含量、细胞表面积大小来确定。实验结果如下:单独使用ET-1后,心肌细胞内反应ROS含量的DCF-DA荧光值比对照组增加77%,反应心肌肥大的PI荧光值、细胞内蛋白质含量、细胞表面积也分别比对照组增加128%、87%和151%。ET-1合用内皮素受体A亚型(ET_A)受体拮抗剂ABT-627、PKC抑制剂CC或过氧化氢酶后,DCF-DA的增加分别减弱62%、60%和51%,同时心肌细胞肥大也被抑制,单独使用PKC激动剂佛波醇脂(PMA)也能使DCF-DA的产生比对照组增加74%。因此,在ET-1诱导心肌细胞肥大的过程中,ET-1能够使心肌细胞产生ROS和诱导ROS依赖的心肌细胞肥大,这一作用依赖于ET_A受体的激活和PKC的活化,·ROS在ET-1诱导心肌细胞肥大中起信号传递的作用。  相似文献   

13.
The aim of this study was to determine the effect of protein kinase C (PKC) activation on intracellular Ca(2+) transient and its relation to alpha(1)-adrenoceptor (alpha(1)-AR)-stimulated negative inotropic response in rat ventricles. The electromechanical responses to phenylephrine (PE) in rat ventricular muscles were concomitantly examined using the conventional microelectrode method. The responses of intracellular Ca(2+) transient and cell contractions to PE in the absence of certain pharmacological interventions were ascertained in fura-2-loaded myocytes. The influence of PE on L-type Ca(2+) current (I(Ca,L)) was also examined using a voltage clamp in a whole-cell configuration. PE did not alter the action potential parameters during the negative inotropic phase. The negative inotropic effect (NIE) was inhibited by prazosin, chloroethylclonidine (CEC) and staurosporine, but was insensitive to pertussis toxin. Desensitization of PKC after prolonged pretreatment of rat ventricles with PDBu also abolished the NIE of PE. Caffeine modulated the NIE, but thapsigargin did not. The evoked intracellular Ca(2+) transient and cell contraction were initially decreased by PE, while I(Ca,L) was not altered. Prazosin and staurosporine significantly inhibited the responses. Our data indicated that alpha(1)AR-mediated NIE in rat ventricular muscles was due to the decrease of intracellular Ca(2+) transients by the modulation of PKC on Ca(2+)-releasing channels signaling through a CEC-sensitive alpha(1)AR subtype.  相似文献   

14.
Activation of vanilloid receptor (VR1) by protein kinase C (PKC) was investigated in cells ectopically expressing VR1 and primary cultures of dorsal root ganglion neurons. Submicromolar phorbol 12,13-dibutyrate (PDBu), which stimulates PKC, acutely activated Ca(2+) uptake in VR1-expressing cells at pH 5.5, but not at mildly acidic or neutral pH. PDBu was antagonized by bisindolylmaleimide, a PKC inhibitor, and ruthenium red, a VR1 ionophore blocker, but not capsazepine, a vanilloid antagonist indicating that catalytic activity of PKC is required for PDBu activation of VR1 ion conductance, and is independent of the vanilloid site. Chronic PDBu dramatically down-regulated PKC(alpha) in dorsal root ganglion neurons or the VR1 cell lines, whereas only partially influencing PKCbeta, -delta, -epsilon, and -zeta. Loss of PKC(alpha) correlated with loss of response to acute re-challenge with PDBu. Anandamide, a VR1 agonist in acidic conditions, acts additively with PDBu and remains effective after chronic PKC down-regulation. Thus, two independent VR1 activation pathways can be discriminated: (i) direct ligand binding (anandamide, vanilloids) or (ii) extracellular ligands coupled to PKC by intracellular signaling. Experiments in cell lines co-expressing VR1 with different sets of PKC isozymes showed that acute PDBu-induced activation requires PKC(alpha), but not PKC(epsilon). These studies suggest that PKC(alpha) in sensory neurons may elicit or enhance pain during inflammation or ischemia.  相似文献   

15.
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human T cells. However, a rapid change in intracellular pH (pH(i)), acidification or alkalinization during the activation, is also associated after these two signals. The aim of this study was to define whether the change in pH(i) is affected by calcium and protein kinase C (PKC), in phytohemagglutinin (PHA)-stimulated T cells. T cells were isolated from human peripheral blood. The [Ca(2+)](i) and the pH(i) were measured using, respectively, the fluorescent dyes, Fura-2, and BCECF. In addition, down-regulation of PKC activity by PMA (1 microM, 18 h) was confirmed in these cells using a protein kinase assay. The results indicated that, (1) alkalinization was induced by PHA or PMA in T cells; the results of alkalinization was PKC-dependent and Ca(2+)-independent, (2) in PKC down-regulated T cells, PHA induced acidification; this effect was enhanced by pre-treating the cells with the Na(+)/H(+) exchange inhibitor, 5-(N,N-dimethyl)-amiloride, (DMA, 10 microM, 20 min), (3) the acidification was dependent on the Ca(2+) influx and blocked by removal of extracellular calcium or the addition of the inorganic channel blocker, Ni(2+), and (4) Thapsigargin (TG), a Ca(2+)-ATPase inhibitor, confirmed that acidification by the Ca(2+) influx occurred in T cells in which PKC was not down-regulated. These findings indicate two mechanisms, alkalinization by PKC and acidification by Ca(2+) influx, exist in regulating pH(i) in T cells. This is the first report that PHA stimulates the acidification by Ca(2+) influx but not alkalinization in T cells after down-regulation of PKC. In conclusion, the activity of PKC in T cells determines the response in alkalinization or acidification by PHA.  相似文献   

16.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

17.
The contrasting pattern of cardiac inotropy induced by human peptide endothelin-1 (ET-1) has not been satisfactorily explained. It is not clear whether ET-1 is primarily responsible for increased myocardial ET-1 expression and release with resultant inotropic effects, or for the induction of myocardial hypertrophy and heart failure. There are at least two subtypes of endothelin receptors (ET(A) and ET(B)) and the inotropic effects of ET-1 differ depending on the receptor involved. Along with some other groups, we reported significant subtype-ET(B) endothelin receptor down-regulation in human cardiac cells preincubated with endothelin agonists (Drímal et al. 1999, 2000). The present study was therefore designed to clarify the subtype-selective mechanisms underlying the inotropic response to ET-1 and to its ET(B)-selective fragment (8-21)ET-1 in the isolated rat heart. The hearts were subjected to (1-21)ET-1 and to (8-21)ET-1, or to 30 min of stop-flow ischemia followed by 40 min of reperfusion, both before and after selective blockade of endothelin receptors.The present study revealed that both peptides, ET-1 and its (8-21)ET-1 fragment, significantly reduced coronary blood flow in nmolar and higher concentrations. The concomitant negative inotropy and chronotropy were marked after ET-1, while the infusion of the ET-1(8-21) fragment produced a slight but significant positive inotropic effect. Among the four endothelin antagonists tested in continuous infusion only the non-selective PD145065 and ET(B1/B2) selective BQ788 (in molar concentrations) slightly reduced the early contractile dysfunction of the heart induced by ischemia, whereas ET(A)-selective PD155080 partially protected the rat heart on reperfusion.  相似文献   

18.
Even though there are a few studies dealing with the cardiac effects of amylin, the mechanisms of amylin-induced positive inotropy are not known well. Therefore, we investigated the possible signaling pathways underlying the amylin-induced positive inotropy and compared the cardiac effects of rat amylin (rAmylin) and human amylin (hAmylin).Isolated rat hearts were perfused under constant flow condition and rAmylin or hAmylin was infused to the hearts. Coronary perfusion pressure, heart rate, left ventricular developed pressure and the maximum rate of increase of left ventricular pressure (+dP/dtmax) and the maximum rate of pressure decrease of left ventricle (-dP/dtmin) were measured.rAmylin at concentrations of 1, 10 or 100 nM markedly decreased coronary perfusion pressure, but increased heart rate, left ventricular developed pressure, +dP/dtmax and -dP/dtmin. The infusion of H-89 (50 μM), a protein kinase A (PKA) inhibitor did not change the rAmylin (100 nM)-induced positive inotropic effect. Both diltiazem (1 μM), an L-type Ca2+ channel blocker and ryanodine (10 nM), a sarcoplasmic reticulum (SR) Ca2+ release channel opener completely suppressed the rAmylin-induced positive inotropic effect, but staurosporine (100 nM), a potent protein kinase C (PKC) inhibitor suppressed it partially. hAmylin (1, 10 and 100 nM) had no significant effect on coronary perfusion pressure, heart rate and developed pressure, +dP/dtmax and -dP/dtmin.We concluded that rAmylin might have been produced vasodilatory, positive chronotropic and positive inotropic effects on rat hearts. Ca2+ entry via L-type Ca2+ channels, activation of PKC and Ca2+ release from SR through ryanodine-sensitive Ca2+ channels may be involved in this positive inotropic effect. hAmylin may not produce any significant effect on perfusion pressure, heart rate and contractility in isolated, perfused rat hearts.  相似文献   

19.
To test the responsiveness of living cells to the intracellular messenger diacylglycerol, we developed a prototype caged diacylglycerol compound, 3-O-(alpha-carboxyl-2,4-dinitrobenzyl)-1 ,2-dioctanoyl-rac-glycerol (designated alpha-carboxyl caged diC(8)), that produces dioctanoylglycerol (diC(8)) on photolysis. Alpha-Carboxyl caged diC(8) is biologically inert toward diacylglycerol kinase and protein kinase C in vitro and is readily incorporated into cardiac myocyte membranes, where it has no effect before irradiation. Exposure to near-UV light releases biologically active diC8 in good yield (quantum efficiency = 0.2). Here we examine a cellular response to controlled elevation of diC8 within single cardiac myocytes. Twitch amplitude was monitored in electrically stimulated myocytes, and a ramp increase in the concentration of diC(8) was generated by continuous irradiation of cells loaded with the caged compound. The myocyte response was biphasic with a positive inotropic phase (39% increase in twitch amplitude), followed by a large negative inotropic phase (>80% decrease). The time to peak inotropy for both phases depended on the light intensity, decreasing from 376 +/- 51 S to 44 +/- 5 s (positive phase) and 422 +/- 118 S to 51 +/- 9 S (negative phase) as the light intensity was increased eightfold. Both phases were inhibited by the protein kinase C inhibitor chelethyrine chloride. An increase in extracellular K+ from 5 mM to 20 mM to partially depolarize the cell membrane eliminated the positive inotropic phase, but the negative inotropic response was largely unaltered. The results reveal new features in the response of cardiac muscle to diacylglycerol, including a positive inotropic phase and a complex responsiveness to a simple linear increase in diacylglycerol. The effects of photoreleased diC(8) were similar to the effects of opiate agonists selective for kappa receptors, consistent with a major role for diacylglycerol in these responses.  相似文献   

20.
Adenosine acts as a cardioprotective agent by producing coronary vasodilation, decreasing heart rate and by antagonizing the cardiostimulatory effect of catecholamines; adenosine also exerts a direct negative inotropic effect. Myocardial ischemia is known to be associated with enhanced levels of adenosine, increased protein kinase C (PKC) activity and prostacyclin (PGI2) release. The present study was conducted to determine if myocardial ischemia alters the cardioprotective effect of adenosine by increasing PKC activity and PGI2 release in the isolated rat heart perfused at 10 ml/min with Krebs-Henseleit buffer (KHB; 95% O2+5% CO2). Adenosine (10 mmol/min) reduced myocardial contractility as indicated by a decrease in contractility (dp/dtmax), heart rate (HR) and coronary perfusion pressure (PP). In hearts subjected to 30 min of ischemia (without perfusion) and then reperfused with KHB, adenosine failed to decrease dp/dtmax, HR or PP. However, during infusion of PKC inhibitor H-7 (1-(5-Isoquinolinesulfonyl)-2-methylpiperazine hydrochloride) (H-7; 6 mmol/min), which commenced 10 min before ischemia and continued throughout reperfusion, adenosine produced a decrease in dp/dtmax, HR and PP, similar to that before ischemia. Infusion of the PKC activator phorbol 12,13-dibutyrate (PDBu; 2 nmol/min) but not an inactive analogue in non-ischemic hearts prevented the adenosine induced decrease in dp/dtmax. During infusion of H-7, PDBu failed to block the direct negative inotropic effect of adenosine in non-ischemic hearts. In addition, pretreatment with H-7 or indomethacin (cyclooxygenase inhibitor) significantly reduced the PGI2 release following ischemia. This data suggest that PKC and PGI2 regulate the direct negative inotropic effect of adenosine, which is abolished during ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号