首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetry of movement direction was found in Wistar rats at establishing of motor alimentary conditioned reflex to simultaneously presented visual stimuli. In the course of learning the asymmetry weakened on the whole, but some individuals retained right- or left side preference. The analysis of asymmetry change before and after unilateral cortical inactivation revealed a special role of right hemisphere influences for the formation of right-side preference and of the left hemisphere--for the choice of the left direction. The lack of asymmetry was observed at the presence of the influences from the left hemisphere cortex depressing ipsilateral nigro-striate system and activating the contralateral one. Influences of the cortex of both hemispheres reduce the absolute value of the asymmetry coefficient; the left hemisphere has a special significance for manifestation of temporal asymmetry parameters. Photic interference is a factor modulating the asymmetry. It reduces the right hemisphere activity more than that of the left one; it intensifies right hemisphere influences, contributes to the involvement of the transcallosal conduction channel in the formation of spatial-motor asymmetry.  相似文献   

2.
Hemispheric asymmetry of "emotional resonance" elaborated by the method of P.V. Simonov was studied in Wistar rats. Inactivation of hemispheres was carried out by means of spreading depression. When using as "victims" and "recipients" the animals of the same sex, lateralization of emotional resonance was found to depend upon the velocity of reaction elaboration. In rats rapidly elaborating avoidance reaction the right hemisphere dominated during its performance and so did the left one in animals learning after additional training. When using the animals of different sex as "victims" and "recipients", the right hemisphere dominated in "emotional resonance" performance. Hemispheric asymmetry of "emotional" resonance was more expressed in males than in females.  相似文献   

3.
Electrographic study was carried out in Wistar rats and the rats of genetical catalepsy (GC) strain. In contrast to Wistar rats epileptiform activity was observed in ECoG of GC rats being enhanced at the transition to a cataleptic state. Analysis of spectra and coherence of EEG revealed the presence of interhemispheric brain asymmetry in all the rats. In some frequency bands in GC rats inversion of interhemispheric asymmetry was found, which had been characteristic for Wistar strain. The highest interhemispheric synchronization of biopotentials was observed in the frontal cortical areas in GC rats and in the occipital areas in those of Wistar strain.  相似文献   

4.
In Wistar rats with degenerated dopaminergic terminals of the caudate and accumbens nuclei (administration of 6-hydroxydopamine, 30 mcg, bilaterally), an alimentary conditioned reflex was elaborated in a T-maze. Degeneration of the caudate nucleus terminals disturbed the elaboration, while degeneration of N. accumbens terminals did not affect the learning.  相似文献   

5.
Rats were injected with 1 μg of alpha-melanocyte stimulating hormone (α-MSH) into the third ventricle and locally in the ventral tegmental area and in different regions of the substantia nigra. The modifications produced on grooming behavior and locomotion as well as on the dopamine content of the nucleus accumbens and the caudate putamen, were studied. Both intraventricular peptide administration and microinjections into the ventral tegmental area induced excessive grooming and a significant increase of the locomotor activity. The dopamine content of the nucleus accumbens and caudate putamen was markedly reduced. Injections of the peptide into the substantia nigra pars compacta failed to induce excessive grooming but did provoke a slight increase in locomotor activity and a smaller change in caudate dopamine content than that observed by injections in the ventral tegmental area or in the third ventricle. Dopamine levels in the nucleus accumbens were not changed. Finally, the injections of α-MSH into the lateral substantia nigra did not produce either biochemical or behavioral changes.The results suggests that α-MSH can modify, directly or indirectly, the striatal dopaminergic activity and that the behavioral alterations observed such as excessive grooming, could be mediated by the activation of the dopamine cells from the ventral tegmental area, that in turn may provoke a significative release of dopamine at the caudate putamen nucleus as well as in nucleus accumbens.  相似文献   

6.
Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray fluorescence was applied to the elemental micro-imaging and quantification in thin tissue sections. It was found that elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br and Rb are present in motor cortex, corpus striatum, nucleus accumbens, substantia nigra, ventral tectal area, and dorsal motor nucleus of vagus. The topographic analysis shows that macro-elements like P, S, Cl and K are highly concentrated within the fiber bundles of corpus striatum. In contrast the levels of trace elements like Fe and Zn are the lowest in these structures. It was found that statistically significant differences between the animals with electrical stimulation of vagus nerve and the control are observed in the left side of corpus striatum for P (p = 0.04), S (p = 0.02), Cl (p = 0.05), K (p = 0.02), Fe (p = 0.04) and Zn (p = 0.02). The mass fractions of these elements are increased in the group for which the electrical stimulation of vagus nerve was performed. Moreover, the contents of Ca (p = 0.02), Zn (p = 0.07) and Rb (p = 0.04) in substantia nigra of right hemisphere are found to be significantly lower in the group with stimulation of vagus nerve than in the control rats.  相似文献   

7.
Young rats (21 days old) made nutritionally iron deficient, by feeding them a semisynthetic diet containing skimmed milk for 5 weeks, had significantly lowered hemoglobin levels (5.2 +/- 4 g/100 ml). The nonheme iron content in caudate nucleus was decreased by 47%. The behavioral response of iron-deficient rats to apomorphine (2 mg/kg) and the density of 3,4-dihydroxyphenylethylamine (dopamine) D2 receptors, as measured by [3H]spiperone binding in caudate nucleus, were significantly reduced by 70 and 53%, respectively. The possibility that nutritional iron deficiency may affect protein content in brain was investigated by measuring the apparent concentration of proteins in caudate nucleus and nucleus accumbens from iron-deficient and control animals using two-dimensional gel electrophoresis. The data indicate that iron deficiency can affect content in these two brain regions. Significant changes in the content of 10 proteins were noted in the caudate nucleus and nucleus accumbens in iron-deficient rats. The albumin level was significantly increased in both regions studied, whereas the neuron-specific enolase level was increased in the nucleus accumbens and the glial fibrillary acidic protein level was reduced in the caudate nucleus. The significance of these protein content changes, as well as a reduction in content of a 94-kilodalton protein (a molecular size similar to that of the D2 dopamine receptor), remains to be established.  相似文献   

8.
Age-Correlated Loss of Dopaminergic Binding Sites in Human Basal Ganglia   总被引:9,自引:4,他引:5  
Abstract: Human caudate nucleus, putamen, substantia nigra, and nucleus accumbens were analyzed for the effects of age on dopaminergic binding sites. Decreases in the number of dopaminergic binding sites were detected with age in caudate nucleus (44 specimens from three sample groups) and substantia nigra (n = 12). In caudate nucleus, the decline in [3H]2-amino-6,7-dehydroxy-1,2,3,4-tetrahydronaphthalene sites was three times greater than for [3H]spiperone, but age changes were significant in only two of the three sampling groups. No age changes in binding were detected in the putamen (n = 44) or nucleus accumbens. Age, sex, and tissue source all significantly contributed to variance. However, cause of death, time from death to tissue freezing, and length of storage did not influence dopaminergic binding in the caudate nucleus or putamen. Relative to the life-span, the age-correlated decrease in dopaminergic binding sites of human brain approximates that in aging rodent striatum. Comparisons of altered dopaminergic binding with other age-correlated changes suggest that neuronal loss may not be involved in the loss of binding sites before midlife.  相似文献   

9.
The dopamine (DA) pathway mediates numerous neuronal functions which are implicated in psychiatric disorders. Previously, our lab investigated the status of the dopamine transporter in the Wistar-Kyoto rat, a purported rodent model of depressive behavior, and reported significant alterations in transporter binding sites in several brain regions when compared to control rat strains. Given that DA-2 and DA-3 receptors belong to the same class of DA receptors, are co-localized in the mesolimbic and nigrostriatal regions of the brain and function as autoreceptors, this study mapped the distribution of central DA-2 and DA-3 receptors in Wistar-Kyoto and Wistar rats. The results indicated that while the binding of 125I-sulpride to DA-2 receptors was higher in the nucleus accumbens (shell) and ventral tegmental area, it was lower in the nucleus accumbens (core), caudate putamen and hypothalamus in Wistar-Kyoto compared to Wistar rats. In contrast, the binding of 125I-sulpride to DA-3 receptors was higher in the caudate putamen, nucleus accumbens (shell and core) and islands of Calleja in Wistar-Kyoto compared to Wistar rats. Given that DA-2 like receptors in the ventral tegmental area function as autoreceptors, it is possible that the greater inhibitory effects exerted by DA-2 and DA-3 receptors in Wistar-Kyoto rats may lead to a net deficit in DA levels in areas receiving projection from this cell body area.  相似文献   

10.
Unilateral focal cortical suction lesions of varying diameter from 0.7 to 2.0 mm were made in the right posterior lateral cortex of rats. Only the 1.0 mm lesion size resulted in spontaneous postoperative hyperactivity. This increased activity was accompanied by significantly elevations in substantia nigra and caudate nucleus dopamine concentrations. Other lesion sizes did not effect behavior or brain biochemical concentrations in this fashion. These results suggest a functional organization in this area of posterior cortex which affects both neurochemistry and behavior.  相似文献   

11.
Di Giannuario A  Pieretti S 《Peptides》2000,21(7):1125-1130
The effects induced by nociceptin on morphine-induced release of dopamine (DA), 3,4-dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens and nucleus caudate were studied in rats by microdialysis with electrochemical detection. Nociceptin administered intracerebroventricularly (i.c.v.) at doses of 2, 5 and 10 nmol/rat changed neither DA nor metabolites release in the shell of the nucleus accumbens or in the nucleus caudate. Morphine administered intraperitoneally (i.p.) (2, 5, and 10 mg/kg) increased DA and metabolites release more in the shell of the nucleus accumbens than in the nucleus caudate. When nociceptin (5 or 10 nmol) was administered 15 min before morphine (5 or 10 mg/kg), it significantly reduced morphine-induced DA and metabolites release in the shell of the nucleus accumbens, whereas only a slight, nonsignificant reduction was observed in the nucleus caudate. Our data indicate that nociceptin may regulate the stimulating action associated with morphine-induced DA release more in the nucleus accumbens than in the nucleus caudate, and are consistent with recent observations that nociceptin reversed ethanol- and morphine-induced conditioned place preference. Therefore, the nociceptin-induced reduction of DA release stimulated by morphine in the nucleus accumbens, and the results obtained with nociceptin in the conditioned place preference procedure suggest a role for nociceptin in the modulation of the behavioral and neurochemical effects of abuse drugs.  相似文献   

12.
G P Mereu  C Pacitti  A Argiolas 《Life sciences》1983,32(12):1383-1389
The effect of (-)-cathinone (CAT), an alkaloid from khat leaves, on brain dopamine (DA) metabolism and on the firing rate of nigral DA neurons was studied in rats, in comparison with that of d-amphetamine. Like d-amphetamine, CAT (8-40 mg/kg i.p.) decreased DOPAC levels in the caudate nucleus, nucleus accumbens and frontal cortex, without modifying DA concentrations. CAT showed approximately one fifth of the potency of d-amphetamine in this effect. CAT, injected i.v. to unanesthetized, paralyzed rats, inhibited the firing rate of DA neurons in the substantia nigra, pars compacta, showing a similar potency to that of d-amphetamine in this respect. CAT-induced inhibition of dopaminergic firing was reversed by haloperidol.  相似文献   

13.
In Wistar rats, after 6 h of sleep deprivation and subsequent 2 h postdeprivation sleep, we found significant changes in optical density of CART peptide in neurons of nucleus accumbens and hypothalamic nucleus arcuatus as well as in processes coming into substantia nigra from nucleus accumbens. The obtained data revealed unidirectional changes of optical density of CART and tyrosine hydroxylase in the studied structures: a decrease after sleep deprivation (p < 0.05) and, on the contrary, an increase after postdeprivation sleep (p < 0.05). Confocal laser microscopy showed morphological connections of CART and dopaminergic neurons and possible colocalization of these both substances in the same neuron at the postdeprivation sleep. In experiments in vitro, after 1 h of incubation of surviving brain sections from the substantia nigra area in the medium with CART peptide there was revealed a rise of optical density of tyrosine hydroxylase in the substantia nigra pars compacta by 55% (p < 0.05). The obtained data indicate an activating effect of CART peptide on brain dopaminergic neurons and its role as a modulator of their functional activity.  相似文献   

14.
The effect of gonadectomy and sex-steroid hormones treatment on functional interhemispheric asymmetry to the reaction of pain cry avoidance of another species (emotional reactions) and motor and exploratory activity of open-field behavior in Wistar rats of 3 months old has been investigated. A spreading depression technique for hemisphere inactivation has been used. The hemispheric asymmetry of the reactions in intact rats was characterized by sex dimorphism; the left hemisphere dominated to a great extent in males than in females under the control of emotional reactions; in motor and exploratory activity in open-field behavior of rats the left hemisphere dominated in males and the right one--in female. In both sexes the neonatal gonadectomy levelled the interhemispheric differences in reactions under investigation. The following treatment of females with estradiol and males with testosterone didn't restore the asymmetry. After the castration at the age of 3 months the correlation between the size and direction of interhemispheric differences became reverse. The treatment of females with testosterone and males with estradiol both castrated in adulthood restored the interhemispheric asymmetry in males and had no effect in females. The treatment of intact rats with hormones of opposite sex led to the enhancement of left hemisphere dominance in motor and exploratory activity in males and levelled the asymmetry in females. It has been shown that in adult rats sex-steroids effect predominantly the right hemisphere.  相似文献   

15.
Summary Time- and dose-dependent toxic effects of lead (Pb) acetate on astroglia, oligodendroglia, and meningeal fibroblasts cultured from immature rat brain were measured. Cultures were exposed for 3 d to Pb (1,10, and 100 μM) and then examined immediately (Day 0) or 3 or 10 d after Pb treatment was discontinued. The percentages of astroglia and fibroblasts excluding dye were unaffected by Pb, whereas the percentage of oligodendroglia excluding dye decrease significantly (P<0.01) at all time points after exposure to 100 μM Pb. Lead (100 μM) also reduced the total cell numbers of astroglia, oligodendroglia, and meningeal fibroblasts. Amino acid incorporation into protein by oligodendroglia was stimulated after exposure to 100 μM Pb at all time points and also by 1 and 10 μM on Day 3. Incorporation was stimulated in astroglia only on Day 0 by 10 and 100 μM. Hydrocortisone-stimulated glycerolphosphate dehydrogenase (GPDH) activity was assayed in oligodendroglia cultures. A significant decrease in specific activity was seen after a 4-d exposure to lead. Because oligodendroglia are responsible for myelin synthesis in the central nervous system, and GPDH may synthesize a precursor for myelin lipid synthesis, it was proposed that the hypomyelination observed in lead-intoxicated neonatal rats may result partially from a primary toxic effect on oligodendroglia. GPDH activity was not inhibited by Pb in mixed glial cultures containing both astroglia and oligodendroglia. This result suggests that astroglia in culture have the ability to delay the lead-induced inhibition of oligodendroglial GPDH activity and supports the hypothesis that astroglia in culture serve a protective function. This work was supported by Environmental Protection Agency Grant R811500 and by U. S. Department of Agriculture Project M-6839 Animal Health Formula Funding Project 6652. This work was carried out by J.-N. Wu in partial fulfillment of the requirements for a Master of Science degree in Veterinary Public Health at Texas A&M University.  相似文献   

16.
Sources of divergent and nondivergent pathways from the substantia nigra in the forebrain were studied in experiments on rats by the method of retrograde axonal transport of luminescent dyes and horseradish peroxidase. Two ascending projection systems were demonstrated. The first is characterized by marked divergence of axon collaterals on the caudato-putamen of both hemispheres, and the caudato-putamen and globus pallidus, and caudato-putamen and nucleus accumbens of the homonymous hemisphere. The second projection system runs into the thalamus and does not form axon collaterals in striatal structures.  相似文献   

17.
The Wistar-Kyoto (WKY) rat is a stress-sensitive strain that is prone to depressive-like behavior in various experimental paradigms. While recent work has highlighted a role for dopamine (DA) in the pathology of depression, research on the WKY rat has also suggested that dysfunction of DA pathways may be an important component of the behavior in this strain. Previous work has demonstrated differential patterns of DA transporter sites, DA D2 and D3 receptors in WKY rats compared to control strains. To further this work, the present study utilized autoradiographic analysis of [3H]-SCH23390 binding to DA D1 receptors in various brain regions of na?ve male WKY and Wistar (WIS) rats. The results revealed a significant strain difference, with WKY rats demonstrating lower D1 binding in the caudate putamen and regions of the nucleus accumbens (p<0.05). An opposite pattern was found in the substantia nigra pars reticulata where D1 binding was higher in WKY rats compared to WIS rats (p<0.05). Because the D1 receptor represents a critical site where DA acts to modify behavior related to depression, the altered expression of this receptor in the WKY rat found in the present study may be reflective of the depressive susceptibility noted in this strain.  相似文献   

18.
Drugs of abuse, such as phencyclidine (PCP), methamphetamine (METH), and cocaine (COC) are known to affect several behaviors in rats, such as motor activity, stereotypy, and circling. In this study, we evaluated whether these drugs produce circling preferences in the presence or absence of unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the caudate nucleus. Adult male CD rats were lesioned with 10 μg 6-OHDA/site. Animals were dosed with PCP (15 mg/kg, ip), its congener, (+) MK-801 (0.15 mg/kg, ip), METH (2 mg/kg, ip), COC (60 mg/kg, ip), or apomorphine (0.2 mg/kg, ip). circling preference was recorded in control and lesioned rats for 2 h before animals were sacrificed to determine monoamine levels by HPLC/EC. In control animals, administration of these drugs produced 60–70% left circling. In, lesioned animals, these drugs produced 78–90% ipsilateral (toward the lesion) circling, except apomorphine, which produced 60–80% contralateral (away from the lesion) circling. Dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations significantly decreased ipsilaterally in lesioned caudate nucleus (CN) and substantia nigra (SN). However, no significant changes were observed in nucleus accumbens (NA) and olfactory tubercles (OT). These data demonstrate that drugs of abuse like PCP, its congener (+) MK-801, METH, and COC produce a greater preference to turn toward the left than the right, a finding similar to that found in human psychosis. Since 6-OHDA lesions enhanced the circling bias and depleted DA and its metabolites DOPAC and HVA, it also suggests that the dopaminergic system may be involved in the circling behavior.  相似文献   

19.
Interhemispheric asymmetry of positive emotional reactions was studied in rats: satisfaction of drinking need and self-stimulation. Successive inactivation of the hemispheres was carried out by potassium spreading depression. Switching off of the right as well as the left hemispheres symmetrically influenced the whole quantity of the water, drunk by the rats to a full thirst satisfaction, i. e. the magnitude of need. However, at different stages of drinking need satisfaction an interhemispheric asymmetry was observed: under a strong drinking motivation the right hemisphere dominated, under a weak motivation--the left one. Switching off of the right hemisphere lowered the frequency of self-stimulation of the lateral hypothalamus and switching off the left one heightened it, testifying to the dominance of the right hemisphere in the reaction of self-stimulation. This reaction was also characterized by asymmetry of the lateral hypothalamus nuclei; reactivity to hemispheres inactivation (decreasing or increasing of self-stimulation frequency) of the right nucleus was more expressed than that of the left one.  相似文献   

20.
Using the apomorphine-induced stereotyped gnawing response as a selection criterion, two distinct groups of rats can be distinguished, apomorphine-susceptible (APO-SUS) and apomorphine-unsusceptible (APO-UNSUS) rats. These two lines differ in several components of both striatal and extrastriatal areas. This study deals with the expression of neuropeptide Y (NPY)mRNA-expressing neurons in the nucleus accumbens, caudate putamen and cerebral cortex of both rat lines, using non-radioactive in situ hybridisation. The morphology of the neurons in the three regions is similar, viz. oblong, rectangular or triangular, with two or three processes. The neurons are homogeneously distributed in all regions, and in the nucleus accumbens they are particularly numerous ventrally to the anterior commissure. Using automated image analysis, the mean numerical density of NPYmRNA-positive neurons per brain region and the mean NPYmRNA expression level per neuron per brain region were determined. No differences appear in the numerical densities of NPYmRNA-containing neurons in the nucleus accumbens, caudate putamen and cortex between APO-SUS and APO-UNSUS rats. However, distinct differences between the rat lines are present in the level of NPYmRNA expression per neuron in the nucleus accumbens and in the caudate putamen, showing that NPY contributes to the differential neurochemical make-up of these rat lines that is responsible for their obvious differences in behaviour, physiology and immune competence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号