共查询到20条相似文献,搜索用时 15 毫秒
1.
N Carvajal J Olate M Salas V López J Cerpa P Herrera E Uribe 《Biochemical and biophysical research communications》1999,264(1):196-200
Agmatinase (agmatine ureohydrolase, EC 3.5.3.11) from Escherichia coli was inactivated by diethyl pyrocarbonate (DEPC) and illumination in the presence of Rose bengal. Protection against photoinactivation was afforded by the product putrescine, and the dissociation constant of the enzyme-protector complex (12 mM) was essentially equal to the K(i) value for this compound acting as a competitive inhibitor of agmatine hydrolysis. Upon mutation of His163 by phenylalanine, the agmatinase activity was reduced to 3-5% of wild-type activity, without any change in K(m) for agmatine or K(i) for putrescine inhibition. The mutant was insensitive to DEPC and dye-sensitized inactivations. We conclude that His163 plays an important role in the catalytic function of agmatinase, but it is not directly involved in substrate binding. 相似文献
2.
Hu X Han Z Wyche JH Hendrickson EA 《Apoptosis : an international journal on programmed cell death》2003,8(3):277-289
The apoptosis effector Bid regulates cell death at the level of mitochondrial cytochrome c efflux. Bid consists of 8 -helices (designated H1 through H8, respectively) and is a soluble cytosolic protein in its native state. Proteolysis of the N-terminus (encompassing H1 and H2) of Bid yields activated tBid (truncated Bid), which translocates to the mitochondria and induces the efflux of cytochrome c. Here, we demonstrate that helix H6 of tBid is necessary, albeit not sufficient, for mitochondrial binding. In particular, a 33 amino acid long domain, which encompassed H6 and H7, behaved as the minimum domain in tBid that was sufficient for mitochondrial binding. Unexpectedly, the hydrophobic surface of these helices could be mutated without altering the binding activity of the domain, implying that the secondary structure of the helices may be the key determinant of binding. These experiments expand our mechanistic understanding of the apoptotic regulator, tBid. 相似文献
3.
Oxidation of the isolated catalytic domain B of xylanase C (XynC-B) from Fibrobacter succinogenes with N-bromosuccinimide (NBS) resulted in the modification of five of the seven Trp residues present in the enzyme. Hydrolytic activity of the enzyme was rapidly lost upon initiation of oxidation as a molar ratio of about two NBS molecules per molar equivalent of protein was sufficient to cause 50% inhibition of enzyme activity, and the addition of five molar equivalents of NBS resulted in less than 10% activity. Pre-incubation of XynC-B with the competitive inhibitor D-xylose resulted in the apparent protection of two Trp residues from oxidation. Xylose protection of the enzyme also resulted in a maintenance of activity, with 60% activity still evident after addition of 8-9 molar equivalents of NBS. This protection from inactivation was enhanced by the inclusion of xylohexaose in reaction mixtures. Under these conditions, however, a further Trp residue was protected from NBS oxidation. The three protected Trp residues were identified as Trp135, Trp161 and Trp202 by differential labelling and peptide mapping of NBS-oxidized preparations of the xylanase employing a combination of electrospray mass spectroscopic analysis and N-terminal sequencing. By analogy to the known structures of the family 11 xylanases, the fully conserved Trp202 residue is located on the only alpha-helix present in the enzymes, at the interface between it and the back of the beta-sheet which forms the active site cleft. Trp135 represents a highly conserved aromatic residue in family 11, but it is replaced with Thr in domain A of F. succinogenes xylanase C. To investigate the role of Trp135 in conferring the different activity profile of domain B relative to domain A, the Trp135Thr and Trp135Ala derivatives of domain B were prepared by site-directed mutagenesis. However, the kinetic parameters of the two domain B derivatives were not significantly different compared to the wild-type enzyme as reflected by K(M) and k(cat) values and product distribution profiles. Similar results were obtained with the Trp161Ala derivative of domain B, indicating that these two residues do not directly participate in the binding of substrate but likely form the foundation for binding subsite 2. 相似文献
4.
Precursor maltose-binding protein synthesized in vitro was shown to be active in binding maltose by affinity chromatography. 相似文献
5.
MEK kinase activity is not necessary for Raf-1 function 总被引:18,自引:0,他引:18
Hüser M Luckett J Chiloeches A Mercer K Iwobi M Giblett S Sun XM Brown J Marais R Pritchard C 《The EMBO journal》2001,20(8):1940-1951
Raf-1 protein kinase has been identified as an integral component of the Ras/Raf/MEK/ERK signalling pathway in mammals. Activation of Raf-1 is achieved by RAS:GTP binding and other events at the plasma membrane including tyrosine phosphorylation at residues 340/341. We have used gene targeting to generate a 'knockout' of the raf-1 gene in mice as well as a rafFF mutant version of endogenous Raf-1 with Y340FY341F mutations. Raf-1(-/-) mice die in embryogenesis and show vascular defects in the yolk sac and placenta as well as increased apoptosis of embryonic tissues. Cell proliferation is not affected. Raf-1 from cells derived from raf-1(FF/FF) mice has no detectable activity towards MEK in vitro, and yet raf-1(FF/FF) mice survive to adulthood, are fertile and have an apparently normal phenotype. In cells derived from both the raf-1(-/-) and raf-1(FF/FF) mice, ERK activation is normal. These results strongly argue that MEK kinase activity of Raf-1 is not essential for normal mouse development and that Raf-1 plays a key role in preventing apoptosis. 相似文献
6.
Phospholamban is a good substrate for cyclic GMP-dependent protein kinase in vitro, but not in intact cardiac or smooth muscle.
下载免费PDF全文

J P Huggins E A Cook J R Piggott T J Mattinsley P J England 《The Biochemical journal》1989,260(3):829-835
Protein residualizing labels facilitate localization of tissue sites of protein catabolism and the quantification of protein accumulation because of their prolonged intracellular retention of protein accumulation because of their prolonged intracellular retention times. Radioiodinated residualizing labels have been used to define the metabolism of a wide variety of proteins, but this has necessitated destructive analysis. Here we describe the implementation and validation of a novel 19F-containing residualizing label for protein, NN-dilactitol-3,5-bis(trifluoromethyl)benzylamine (DLBA), that permits the non-invasive assessment of protein accumulation and catabolism by n.m.r. spectroscopy in vivo. DLBA comprises a reporter molecule containing six equivalent 19F atoms. 19F is strongly n.m.r.-active, has 100% natural abundance, and is present in minimal background concentrations in soft tissues. We validated the use of DLBA as a protein-labelling compound by coupling to asialofetuin (ASF), a protein that is recognized exclusively by hepatic tissue via a saturable receptor-mediated process. Coupling of DLBA to ASF by reductive amination had no effect on the physiological receptor-mediated uptake of the protein in rat liver in vivo. The 19F-n.m.r. spectrum of DLBA exhibited a single peak that was subject to a small chemical-shift change and broadening after coupling to ASF. Pronase digestion of DLBA-ASF was performed to simulate intracellular degradation products, and resulted in a narrower set of resonances, with chemical shifts intermediate between those of uncoupled DLBA and DLBA-ASF. Intravenous administration of DLBA-ASF to rats followed by quantification of 19F in homogenates of liver tissue indicated that the half-life of residence time of degradation products from DLBA-ASF in liver was approx. 2 days. This intracellular half-life was comparable with that described for similar residualizing labels that contain radioiodide as a reporter. Similar results for the half-life of retention were obtained non-destructively and non-invasively in situ with the use of a whole-body radio-frequency antenna to acquire sequential spectra over 80 h after intravenous administration of DLBA-ASF. Quantification of these spectra demonstrated an initial accumulation of DLBA-ASF in liver followed by an expected gradual loss of 19F-labelled degradation products. The approach developed offers promise for the sequential and longitudinal characterization of metabolism of specific proteins in individual experimental animals and ultimately in human subjects. 相似文献
7.
Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. 总被引:27,自引:0,他引:27
The membrane glycoprotein of vesicular stomatitis virus (VSV), synthesized in vitro in the presence of pancreatic microsomes, is glycosylated in two distinct steps while its polypeptide chain is nascent (Rothman and Lodish, 1977). We show here that unglycosylated glycoprotein, which accumulates in vivo following treatment of cells with tunicamycin and in vitro as a result of translation in the presence of detergent-treated microsomal membranes, is inserted normally as a transmembrane protein. This means that glycosylation, while normally occurring concurrently with insertion, is not required for insertion. Our experiments also show that the two steps in glycosylation correspond to the sequential transfer of preformed “core” oligosaccharides of typical structure to two Asn residues in the growing chain. The accumulation of unglycosylated glycoprotein in vitro is due to the fact that the completed transmembrane polypeptide cannot be glycosylated. The detergent treatment of microsomes impairs their rate of glycosylation so that chains are frequently completed before they can be glycosylated. This provides a simple explanation for certain types of heterogeneity often found in glycoproteins. We believe that the detergent treatment procedure results in the solubilization of the microsomal membrane followed by reconstitution. This is a prerequisite for the eventual purification of the membrane proteins and lipids involved in insertion and glycosylation of this model membrane protein. 相似文献
8.
Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin 总被引:12,自引:0,他引:12
H. J. Gilbert G. P. Hazlewood J. I. Laurie C. G. Orpin G. P. Xue 《Molecular microbiology》1992,6(15):2065-2072
A cDNA (xynA), encoding xylanase A (XYLA), was isolated from a cDNA library, derived from mRNA extracted from the rumen anaerobic fungus, Neocallimastix patriciarum. Recombinant XYLA, purified from Escherichia coli harbouring xynA, had a M(r) of 53,000 and hydrolysed oat-spelt xylan to xylobiose and xylose. The enzyme did not hydrolyse any cellulosic substrates. The nucleotide sequence of xynA revealed a single open reading frame of 1821 bp coding for a protein of M(r) 66,192. The predicted primary structure of XYLA comprised an N-terminal signal peptide followed by a 225-amino-acid repeated sequence, which was separated from a tandem 40-residue C-terminal repeat by a threonine/proline linker sequence. The large N-terminal reiterated regions consisted of distinct catalytic domains which displayed similar substrate specificities to the full-length enzyme. The reiterated structure of XYLA suggests that the enzyme was derived from an ancestral gene which underwent two discrete duplications. Sequence comparison analysis revealed significant homology between XYLA and bacterial xylanases belonging to cellulase/xylanase family G. One of these homologous enzymes is derived from the rumen bacterium Ruminococcus flavefaciens. The homology observed between XYLA and a rumen prokaryote xylanase could be a consequence of the horizontal transfer of genes between rumen prokaryotes and lower eukaryotes, either when the organisms were resident in the rumen, or prior to their colonization of the ruminant. It should also be noted that Neocallimastix XYLA is the first example of a xylanase which consists of reiterated sequences. It remains to be established whether this is a common phenomenon in other rumen fungal plant cell wall hydrolases. 相似文献
9.
Several recently discovered members of the carboxypeptidase E (CPE) gene family lack critical active site residues that are conserved in other family members. For example, three CPE-like proteins contain a Tyr in place of Glu300 (equivalent to Glu270 of carboxypeptidase A and B). To investigate the importance of this position, Glu300 of rat CPE was converted into Gln, Lys, or Tyr, and the proteins expressed in Sf9 cells using the baculovirus system. All three mutants were secreted from the cells, but the media showed no enzyme activity above background levels. Wild-type CPE and the Gln300 point mutant bound to a p-aminobenzoyl-Arg-Sepharose affinity resin, and this binding was competed by an active site-directed inhibitor, guanidinoethylmercaptosuccinic acid. The affinity purified mutant CPE protein showed no detectable enzyme activity (<0.004% of wild-type CPE) toward dansyl-Phe-Ala-Arg. Expression of the Gln300 and Lys300 mutant CPE proteins in the NIT3 mouse pancreatic beta-cell line showed that these mutants are routed into secretory vesicles and secreted via the regulated pathway. Taken together, these results indicate that Glu300 of CPE is essential for enzyme activity, but not required for substrate binding or for routing into the regulated secretory pathway. 相似文献
10.
Tan SL Tareen SU Melville MW Blakely CM Katze MG 《The Journal of biological chemistry》2002,277(39):36109-36117
The PKR protein kinase is among the best-studied effectors of the host interferon (IFN)-induced antiviral and antiproliferative response system. In response to stress signals, including virus infection, the normally latent PKR becomes activated through autophosphorylation and dimerization and phosphorylates the eIF2alpha translation initiation factor subunit, leading to an inhibition of mRNA translation initiation. While numerous virally encoded or modulated proteins that bind and inhibit PKR during virus infection have been studied, little is known about the cellular proteins that counteract PKR activity in uninfected cells. Overexpression of PKR in yeast also leads to an inhibition of eIF2alpha-dependent protein synthesis, resulting in severe growth suppression. Screening of a human cDNA library for clones capable of counteracting the PKR-mediated growth defect in yeast led to the identification of the catalytic subunit (PP1(C)) of protein phosphatase 1alpha. PP1(C) reduced double-stranded RNA-mediated auto-activation of PKR and inhibited PKR transphosphorylation activities. A specific and direct interaction between PP1(C) and PKR was detected, with PP1(C) binding to the N-terminal regulatory region regardless of the double-stranded RNA-binding activity of PKR. Importantly, a consensus motif shared by many PP1(C)-interacting proteins was necessary for PKR binding to PP1(C). The PKR-interactive site was mapped to a C-terminal non-catalytic region that is conserved in the PP1(C)2 isoform. Indeed, co-expression of PP1(C) or PP1(C)2 inhibited PKR dimer formation in Escherichia coli. Interestingly, co-expression of a PP1(C) mutant lacking the catalytic domain, despite retaining its ability to bind PKR, did not prevent PKR dimerization. Our findings suggest that PP1(C) modulates PKR activity via protein dephosphorylation and subsequent disruption of PKR dimers. 相似文献
11.
12.
Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding 总被引:5,自引:1,他引:5
下载免费PDF全文

《The Journal of cell biology》1996,134(5):1313-1322
Integrin-associated protein (IAP/CD47) is physically associated with the alpha v beta 3 vitronectin (Vn) receptor and a functionally and immunologically related integrin on neutrophils (PMN) and monocytes. Anti-IAP antibodies inhibit multiple phagocyte functions, including Arg- Gly-Asp (RGD)-initiated activation of phagocytosis, chemotaxis, and respiratory burst; PMN adhesion to entactin; and PMN transendothelial and transepithelial migration at a step subsequent to tight intercellular adhesion. Anti-IAP antibodies also inhibit binding of Vn- coated particles to many cells expressing alpha v beta 3. However, prior studies with anti-IAP did not directly address IAP function because they could not distinguish between IAP blockade and antibody- induced signaling effects on cells. To better determine the function of IAP, we have characterized and used an IAP-deficient human cell line. Despite expressing alpha v integrins, these cells do not bind Vn-coated particles unless transfected with IAP expression constructs. Increasing the level of alpha v beta 3 expression or increasing Vn density on the particle does not overcome the requirement for IAP. All known splice variants of IAP restore Vn particle binding equivalently. Indeed, the membrane-anchored IAP Ig variable domain suffices to mediate Vn particle binding in this system, while the multiply membrane-spanning and cytoplasmic domains are dispensable. In all cases, adhesion to a Vn- coated surface and fibronectin particle binding through alpha 5 beta 1 fibronectin receptors are independent of IAP expression. These data demonstrate that some alpha v integrin ligand-binding functions are IAP independent, whereas others require IAP, presumably through direct physical interaction between its Ig domain and the integrin. 相似文献
13.
The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. 总被引:1,自引:2,他引:1
下载免费PDF全文

F W Paradis H Zhu P J Krell J P Phillips C W Forsberg 《Journal of bacteriology》1993,175(23):7666-7672
The xynC gene of Fibrobacter succinogenes S85 codes for a 66.4-kDa xylanase which consists of three distinct domains separated by two flexible regions rich in serine residues. Domains A and B of XynC code for catalytic domains with 56.5% identity and 9.6% similarity with each other, and both domains share homology with xylanases of Ruminococcus flavefaciens, Neocallimastix patriciarum, Clostridium acetobutylicum, Bacillus pumilus, Bacillus subtilis, and Bacillus circulans. More than 88% of the xylanase activity of Escherichia coli cells carrying the original 13-kb recombinant plasmid was released from intact cells by cold water washes. The major products of hydrolysis of xylan by both domains were xylose and xylobiose, indicating that the xynC gene product exhibits catalytic properties similar to those of the XynA xylanases from R. flavefaciens and N. patriciarum. So far, these features are not shared broadly with bacteria from other environments and may indicate specific selection for this domain structure in the highly competitive environment of the rumen. 相似文献
14.
Beinker P Schlee S Auvula R Reinstein J 《The Journal of biological chemistry》2005,280(45):37965-37973
ClpB cooperates with the DnaK chaperone system in the reactivation of protein from aggregates and is a member of the ATPases associated with a variety of cellular activities (AAA+) protein family. The underlying disaggregation reaction is dependent on ATP hydrolysis at both AAA cassettes of ClpB but the role of each AAA cassette in the reaction cycle is largely unknown. Here we analyze the activity of the separately expressed and purified nucleotide binding domains of ClpB from Thermus thermophilus. The two fragments show different biochemical properties: the first construct is inactive in ATPase activity assays and binds nucleotides weakly, the second construct has a very high ATPase activity and interacts tightly with nucleotides. Both individual fragments have lost their chaperone function and are not able to form large oligomers. When combined in solution, however, the two fragments form a stable heterodimer with oligomerization capacities equivalent to wild-type ClpB. This non-covalent complex regains activity in reactivating protein aggregates in cooperation with the DnaK chaperone system. Upon complex formation the ATPase activity of fragment 2 is reduced to a level similar to wild-type ClpB. Hence functional ClpB can be reassembled from its isolated AAA cassettes showing that covalent linkage of these domains is not a prerequisite for the chaperone activity. The observation that the intrinsically high ATPase activity of AAA2 is suppressed by AAA1 allows a hypothetical assignment of their mechanistic function. Whereas the energy gained upon ATP hydrolysis at the AAA2 is likely to drive a conformational change of the structure of ClpB, AAA1 might function as a regulator of the chaperone cycle. 相似文献
15.
S C Liu Q Wang G E Lienhard S R Keller 《The Journal of biological chemistry》1999,274(25):18093-18099
The insulin receptor substrates (IRS) 1 and 2 are required for normal growth and glucose homeostasis in mice. To determine whether IRS-3, a recently cloned member of the IRS family, is also involved in the regulation of these, we have generated mice with a targeted disruption of the IRS-3 gene and characterized them. Compared with wild-type mice, the IRS-3-null mice showed normal body weight throughout development, normal blood glucose levels in the fed and fasted state and following an oral glucose bolus, and normal fed and fasted plasma insulin levels. IRS-3 is most abundant in adipocytes and is tyrosine-phosphorylated in response to insulin in these cells. Therefore, isolated adipocytes were analyzed for changes in insulin effects. Insulin-stimulated glucose transport in the adipocytes from the IRS-3-null mice was the same as in wild-type cells. The extent of tyrosine phosphorylation of IRS-1/2 following insulin stimulation was similar in adipocytes from IRS-3-null and wild-type mice, and the insulin-induced association of tyrosine-phosphorylated IRS-1/2 with phosphatidylinositol 3-kinase and SHP-2 was not detectably increased by IRS-3 deficiency. Thus, IRS-3 was not essential for normal growth, glucose homeostasis, and glucose transport in adipocytes, and in its absence no significant compensatory augmentation of insulin signaling through IRS-1/2 was evident. 相似文献
16.
The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein 总被引:56,自引:0,他引:56
A membrane-bound protein cofactor (ARF) is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory regulatory component (Gs) of adenylate cyclase. Improved methods for the purification of ARF from bovine brain are described. ARF has a high-affinity binding site for guanine nucleotides. Binding of GTP or GTP gamma S to ARF is necessary for the activity of the cofactor; GDP X ARF does not support ADP-ribosylation of Gs. Although the protein as purified contains stoichiometric amounts of GDP, GTPase activity of isolated ARF was not detected. Cholera toxin-dependent activation of adenylate cyclase thus requires two guanine nucleotide binding proteins. 相似文献
17.
Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. 总被引:15,自引:23,他引:15
下载免费PDF全文

M Stevenson S Haggerty C A Lamonica C M Meier S K Welch A J Wasiak 《Journal of virology》1990,64(5):2421-2425
A common feature in the life cycle of cytocidal retroviruses, including human immunodeficiency virus type 1 (HIV-1), is the accumulation of large amounts of unintegrated viral DNA. As yet, the role of unintegrated viral DNA in the cytopathogenesis of cytocidal retrovirus infections remains unresolved. HIV-1 mutants which were deleted in the integrase/endonuclease gene and which were unable to establish an integrated form of the virus were constructed. Despite an inability to integrate, these mutants were fully competent templates for HIV-1 core and envelope antigen production. HIV-1 antigen could be detected in the supernatants of lymphocyte cultures infected with HIV-1 integrase mutants. However, an inability to rescue infectious virus from these cultures indicated that HIV-1 integration was required for the production of infectious HIV-1. On the basis of the ability of unintegrated HIV-1 DNA to serve as a template for HIV-1 antigen production, it is plausible that unintegrated viral DNA can contribute to the HIV-1 antigen pool during HIV-1 replication. 相似文献
18.
Riazuddin S Ahmed ZM Fanning AS Lagziel A Kitajiri S Ramzan K Khan SN Chattaraj P Friedman PL Anderson JM Belyantseva IA Forge A Riazuddin S Friedman TB 《American journal of human genetics》2006,79(6):1040-1051
The inner ear has fluid-filled compartments of different ionic compositions, including the endolymphatic and perilymphatic spaces of the organ of Corti; the separation from one another by epithelial barriers is required for normal hearing. TRIC encodes tricellulin, a recently discovered tight-junction (TJ) protein that contributes to the structure and function of tricellular contacts of neighboring cells in many epithelial tissues. We show that, in humans, four different recessive mutations of TRIC cause nonsyndromic deafness (DFNB49), a surprisingly limited phenotype, given the widespread tissue distribution of tricellulin in epithelial cells. In the inner ear, tricellulin is concentrated at the tricellular TJs in cochlear and vestibular epithelia, including the structurally complex and extensive junctions between supporting and hair cells. We also demonstrate that there are multiple alternatively spliced isoforms of TRIC in various tissues and that mutations of TRIC associated with hearing loss remove all or most of a conserved region in the cytosolic domain that binds to the cytosolic scaffolding protein ZO-1. A wild-type isoform of tricellulin, which lacks this conserved region, is unaffected by the mutant alleles and is hypothesized to be sufficient for structural and functional integrity of epithelial barriers outside the inner ear. 相似文献
19.
Beyer A Kitzerow A Crute B Kemp BE Witters LA Heilmeyer LM 《Biological chemistry》2000,381(5-6):457-461
AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (cAMPK) have been reported to phosphorylate sites on phosphorylase kinase (PhK). Their target residues Ser 1018 and Ser 1020, respectively, are located in the so-called multi-phosphorylation domain in the PhK alpha subunit. In PhK preparations, only one of these serines is phosphorylated, but never both of them. The aim of this study was to determine whether phosphorylation by cAMPK or AMPK would influence subsequent phosphorylation by the other kinase. Surprisingly, employing four different PhK substrates, it could be demonstrated that, in contradiction to previous reports, PhK is not phosphorylated by AMPK. 相似文献
20.
S. L. Mangala F. S. Kittur M. Nishimoto K. Sakka K. Ohmiya M. Kitaoka K. Hayashi 《Journal of Molecular Catalysis .B, Enzymatic》2003,21(4-6):221-230
A tandem repeat of the family VI cellulose binding domain (CBD) from Clostridium stercorarium xylanase (XylA) was fused at the carboxyl-terminus of Bacillus halodurans xylanase (XylA). B. halodurans XylA is an enzyme which is active in the alkaline region of pH and lacks a CBD. The constructed chimera was expressed in Escherichia coli, purified to homogeneity, and then subjected to detailed characterization. The chimeric enzyme displayed pH activity and stability profiles similar to those of the parental enzyme. The optimal temperature of the chimera was observed at 60 °C and the enzyme was stable up to 50 °C. Binding studies with insoluble polysaccharides indicated that the chimera had acquired an increased affinity for oat spelt xylan and acid-swollen cellulose. The bound chimeric enzyme was desorbed from insoluble substrates with sugars and soluble polysaccharides, indicating that the CBDs also possess an affinity for soluble sugars. Overall, the chimera displayed a higher level of hydrolytic activity toward insoluble oat spelt xylan than its parental enzyme and a similar level of activity toward soluble xylan. 相似文献