首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial and temporal patterns of expression of connexin 26, connexin 32 and connexin 43 were investigated in rat uterus at days 17, 19 and 22 of pregnancy and during delivery (23 days) by immunocytochemistry, Gap junctions, which are essential for the development of labour, are known to undergo rapid increase in the rat myometrium at the end of pregnancy. The expression of connexin 43, the major myometrial gap junction protein, was low throughout pregnancy but increased immediately before the onset of labour (day 22). It was found predominantly in the myometrium, although limited staining was also apparent in the stroma. Immunolabelling revealed the presence of connexins 26 and 32 in uterine luminal epithelial cells on days 17 and 19 of pregnancy, with a marked increase in connexin 26 expression at days 19, 22 and 23; however, marked expression of connexin 32 was apparent only at day 23. No immunoreactivity for either connexin 26 or 32 was found in myometrial cells at any stage of pregnancy. We conclude, contrary to other recent reports, that connexin 26 is not a gap junction protein of the rat myometrial smooth muscle cell. © 1998 Chapman & Hall  相似文献   

2.
Connexin genes code for proteins that form cell-to-cell channels known as gap junctions. The genes for the known connexins 26, 32, 43, and 46 have been assigned to human chromosomes, 13, X, 6, and 13, respectively, by analysis of a panel of human-mouse somatic cell hybrids using rat cDNA probes. A pseudogene of connexin 43 that lacks an intron of the cx43 gene has been located on human chromosome 5. Furthermore, the genes of the two new connexins 37 and 40 have both been assigned to human chromosome 1. Thus the human chromosomes 1 and 13 each carry at least two different connexin genes. Their exact location on these chromosomes is not yet known. From our results subchromosomal assignments can be deduced for the human cx32 gene to Xq13-p11, the human cx37 gene as well as the human cx40 gene to 1pter-q12, and the human cx43 gene to 6q14-qter. The generation of the connexin multigene family from a hypothetical ancestral connexin gene is discussed.  相似文献   

3.
In mammalian species embryo implantation into uterine tissue is restricted to a limited time period, the receptive phase. For successful implantation appropriate differentiation of the receptive endometrium is under the control of ovarian steroid hormones. In addition, locally acting embryonic signals are needed to modulate the maternal environment before invasion of the trophoblast is permitted. The expression pattern of gap junction channel proteins, connexins (cx), is directly related to this process. In rodents as well as in rabbit and humans the receptive endometrium is characterized by a lack of such cell-to-cell communication channels. In the rat endometrium cx26 is suppressed in the epithelium and cx43 in the stromal compartment by maternal progesterone, a phenomenon that can be observed similarly in human endometrium. Experimental approaches revealed that both connexin genes react very sensitively to progesterone and estrogen treatment. In rat and rabbit connexin expression is induced locally in the endometrium in response to the implanting blastocyst. In both species this induction of connexins can be mimicked by a traumatic stimulus. In conclusion, suppression of connexin expression in the endometrium is a characteristic cell biological indication for receptivity in different species. The limited induction of direct cell-to-cell communication properties, probably due to locally acting blastocyst signals, seems to be a precondition for embryo implantation.  相似文献   

4.
Gap junction formation was studied in the uterine epithelium of nonpregnant, pregnant, and pseudopregnant rabbits in the periimplantation phase (6, 7, 8 days post coitum/post human gonadotropin injection) using freeze-fracture and immunocytochemistry as well as intracellular Lucifer yellow injection. At implantation (7 days post coitum) the uterine epithelial cells of the implantation chamber become junctionally coupled as evidenced by all three methods used. Gap junction protein (26K) becomes detectable immunocytochemically with a monoclonal antibody at 6 days post coitum in the epithelium surrounding the blastocyst, i.e., in the forming implantation chamber. The same sequence of events, starting with the presence of the gap junction protein before cell-to-cell coupling becomes evident, was observed in the blastocyst-free segments 1 day later. In contrast, uterine epithelium of nonpregnant and pseudopregnant animals in comparable phases shows an extremely low degree of coupling. The presence of the blastocyst is a necessary condition for the induction of gap junctions as demonstrated by unilateral pregnancy produced by tubal ligation. Thus, gap junction formation is one of the first maternal responses to a locally acting signal of the blastocyst.  相似文献   

5.
Guinea-pig liver gap junctions are constructed from approximately equal amounts of connexins 26 and 32. The assembly of these connexins into connexon hemichannels and gap junctions was studied using antibodies specific to each connexin. Intracellular membranes were shown to contain low amounts of connexin 26 relative to connexin 32 in contrast to the equal connexin ratios detected in lateral plasma membranes and gap junctions. Assembly of gap junctions requires oligomerization of connexins into connexons that may be homomeric or heteromeric. Immunoprecipitation using antibodies to connexins 26 and 32 showed that liver gap junctions were heteromeric. A chemical cross-linking procedure showed that connexons solubilized from guinea-pig liver gap junctions were constructed of hexameric assemblies of connexin subunits. The intracellular site of oligomerization of connexins was investigated by velocity sedimentation in sucrose-detergent gradients. Oligomers of connexins 26 and 32 were extensively present in Golgi membranes and oligomeric intermediates, especially of connexin 26, were detected in the endoplasmic reticulum-Golgi intermediate subcellular fraction. Two intracellular trafficking pathways that may account for the delivery of connexin 26 to the plasma membrane and explain the heteromeric nature of liver gap junctions are discussed.  相似文献   

6.
DNAs coding for seven murine connexins (Cx) (Cx26, Cx31, Cx32, Cx37, Cx40, Cx43, and Cx45) are functionally expressed in human HeLa cells that were deficient in gap junctional communication. We compare the permeabilities of gap junctions comprised of different connexins to iontophoretically injected tracer molecules. Our results show that Lucifer yellow can pass through all connexin channels analyzed. On the other hand, propidium iodide and ethidium bromide penetrate very poorly or not at all through Cx31 and Cx32 channels, respectively, but pass through channels of other connexins. 4,6 Diamidino-2-phenylindole (DAPI) dihydrochloride shows less transfer among Cx31 or Cx43 transfectants. Neurobiotin is weakly transferred among Cx31 transfectants. Total junctional conductance in Cx31 or Cx45 transfected cells is only about half as high as in other connexin transfectants analyzed and does not correlate exactly with any of the tracer permeabilities. Permeability through different connexin channels appears to be dependent on the molecular structure of each tracer, i.e. size, charge and possibly rigidity. This supports the hypothesis that different connexin channels show different permeabilities to second messenger molecules as well as metabolites and may fulfill in this way their specific role in growth control and differentiation of cell types. In addition, we have investigated the function of heterotypic gap junctions after co-cultivation of two different connexin transfectants, one of which had been prelabeled with fluorescent dextran beads. Analysis of Lucifer yellow transfer reveals that HeLa cells expressing Cx31 (beta-type connexin) do not communicate with any other connexin transfectant tested but only with themselves. Two other beta-type connexin transfectants, HeLa-Cx26 and -Cx32, do not transmit Lucifer yellow to any of the alpha-type connexins analyzed. Among alpha- type connexins, Cx40 does not communicate with Cx43. Thus, connexins differ in their ability to form functional heterotypic gap junctions among mammalian cells.  相似文献   

7.
Gap junctions are composed of connexins and are critical for the maintenance of the differentiated state. Consistently, connexin expression is impaired in most cancer cells, and forced expression of connexins following cDNA transfection reverses the tumor phenotype. We have found that the restoration of density inhibition of human pancreatic cancer cells by the antiproliferative somatostatin receptor 2 (sst2) is due to overexpression of endogenous connexins Cx26 and Cx43 and consequent formation of functional gap junctions. Immunoblotting along with protein metabolic labeling and mRNA monitoring revealed that connexin expression is enhanced at the level of translation but is not sensitive to the inhibition of cap-dependent translation initiation. Furthermore, we identified a new internal ribosome entry site (IRES) in the Cx26 mRNA. The activity of Cx26 IRES and that of the previously described Cx43 IRES are enhanced in density-inhibited cells. These data indicate that the restoration of functional gap junctions is likely a critical event in the antiproliferative action of the sst2 receptor. We further suggest that the existence of IRESes in connexin mRNAs permits connexin expression in density-inhibited or differentiated cells, where cap-dependent translation is generally reduced.  相似文献   

8.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with "permissive" connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

9.
We immunohistochemically and morphometrically examined the expression of gap junction protein connexin (Cx) in normal and crush-injured rat sciatic nerves using confocal laser scanning microscopy. Cx26 was localized in the perineurium and Cx43 was present in the perineurium and the epineurium, whereas Cx32 was confined to the paranodal regions of the nodes of Ranvier. Double labeling for connexins and laminin revealed that Cx43 was localized in multiple layers of the perineurium, whereas Cx26 was confined to the innermost layer. Double labeling for connexins and a tight junction protein, occludin, showed that occludin frequently coexisted with Cx43 but existed separately from Cx26 in the perineurium. After crush injury, the pattern of normal Cx32 expression was initially lost but recovered, whereas Cx43 rapidly appeared in the endoneurium and its expression was subsequently attenuated. Although crush injury produced no apparent alteration in Cx43 and occludin in the perineurium, a rapid increase and a subsequent decrease in the frequency of Cx26-positive spots during nerve regeneration were shown by morphometric analysis. These results indicate that Cx26, Cx32, and Cx43 are expressed differently in various types of cells in peripheral nerves and that their expressions are differentially regulated after injury. The expression of connexins and occludin in the perineurium suggests that perineurial cells are not uniform in type and that the regulation of gap junctions and tight junctions is closely related in the perineurium.  相似文献   

10.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   

11.
12.
Gap junctional coupling among cumulus cells is important for oogenesis since its deficiency in mice leads to impaired folliculogenesis. Multiple connexins (Cx), the subunits of gap junction channels, have been found within ovarian follicles in several species but little is known about the connexins in human follicles. The aim of this study was to determine which connexins contribute to gap junctions in human cumulus cells and to explore the possible relationship between connexin expression and pregnancy outcome from in vitro fertilization (IVF). Cumulus cells were obtained from IVF patients undergoing intra-cytoplasmic sperm injection (ICSI). Connexin expression was examined by RT-PCR and confocal microscopy. Cx43 was quantified by immunoblotting and gap junctional coupling was measured by patch-clamp electrophysiology. All but 5 of 20 connexin mRNAs were detected. Of the connexin proteins detected, Cx43 forms numerous gap junction-like plaques but Cx26, Cx30, Cx30.3, Cx32 and Cx40 appeared to be restricted to the cytoplasm. The strength of gap junctional conductance varied between patients and was significantly and positively correlated with Cx43 level, but neither was correlated with patient age. Interestingly, Cx43 level and intercellular conductance were positively correlated with embryo quality as judged by cleavage rate and morphology, and were significantly higher in patients who became pregnant than in those who did not. Thus, despite the presence of multiple connexins, Cx43 is a major contributor to gap junctions in human cumulus cells and its expression level may influence pregnancy outcome after ICSI.  相似文献   

13.
Gap junctional communication plays a vital role in embryogenesis, cell differentiation and the co-ordination of tissue responses. Gap junctions are formed by a family of closely-related proteins called connexins which show tissue-specific patterns of expression. The role of gap junctions in the mammary gland remains unclear. The lumena of mammary gland ducts are lined by luminal cells with an outer layer of basal cells. In rodents, the luminal cells express connexin26 only during pregnancy and lactation and the basal cells, in some reports, express connexin43. In the normal human breast the basal cells express connexin43, although human mammary epithelial cellsin vitrohave been reported to express both connexin26 and connexin43. Analysis of connexin expression at the molecular level is now bringing new insights into the structure and function of gap junctions in a range of normal and pathological cell systems.  相似文献   

14.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.  相似文献   

15.
Gap junctions are intercellular channels composed of connexin subunits that mediate cell-cell communication. The functions of gap junctions are believed to be associated with cell proliferation and differentiation and to be important in maintaining tissue homeostasis. We therefore investigated the expression of connexins (Cx)26 and 43, the two major connexins in human epidermis, and examined the formation of gap junctions during human fetal epidermal development. By immunofluorescence, Cx26 expression was observed between 49 and 96 days' estimated gestational age (EGA) but was not present from 108 days' EGA onwards. Conversely, Cx43 expression was observed from 88 days' EGA onwards. Using electron microscopy, the typical structure of gap junctions was observed from 120 days' EGA. The number of gap junctions increased over time and they were more common in the upper layers, within the periderm and intermediate keratinocyte layers rather than the basal layer. Immunoelectron microscopy revealed Cx43 labeling on the gap junction structures after 105 days' EGA. Formation of gap junctions increased as skin developed, suggesting that gap junctions may play an important role in fetal skin development. Furthermore, the changing patterns of connexin expression suggest that Cx26 is important for early fetal epidermal development.  相似文献   

16.
17.
Modulation of connexin 43 (cx43) in the myometrium of timed pregnant rats was studied using enzyme-linked immunosorbent assay (ELISA), immunocytochemical localization, and immunoblot. These techniques utilized site-specific antibodies directed against a portion of the carboxyl tail of cx43. We found that cx43 is synthesized several days prior to labor but accumulates within the cytoplasm until parturition, when it is rapidly transported to the plasma membrane and assembled into gap junction plaques at the cell surface. These cx43-positive gap junctions begin to disappear from the plasma membrane within hours of delivery of the last pup and are completely absent within 24 hr following delivery. These structures are apparently internalized and degraded within the cytoplasm. ELISA documents a reduction of total cellular cx43 to baseline levels within 5 days following parturition. While the timing of synthesis, cytoplasmic storage, concentration in apparent Golgi vesicles, and transport to and assembly in the plasma membrane are accelerated in three models of preterm labor, the sequence of these events and the correlation of parturition with the formation of gap junctions are identical to those documented in normal labor. These results support the hypothesis that effective labor requires the synthesis and assembly of cx43 into functional gap junctions at the myometrial cell surface.  相似文献   

18.
19.
研究细胞间隙连接蛋白基因43(connexin43,CX43)及其蛋白、雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)在子宫平滑肌瘤中的表达,从核酸及蛋白水平探讨在子宫平滑肌瘤发生中的相关关系。应用核酸原位杂交技术和SP免疫组织化学法,研究37例子宫平滑肌瘤、20例正常子宫平滑肌组织中cx43mRNA及其蛋白、ER、PR的表达规律。结果显示,cx43mRNA及其蛋白、ER、PR在子宫平滑肌瘤中的表达明显高于在子宫平滑肌组织中的水平,差异有显著性(P<0.05)。cx43mRNA及其蛋白在子宫平滑肌瘤中的过度表达,是子宫平滑肌瘤发生过程的重要事件,与ER、PR水平升高呈现一致性,对进一步揭示子宫平滑肌瘤的复杂分子机制、寻求可靠的早期标志有重要意义。  相似文献   

20.
We investigated endothelial gap junctions and their three component connexins, connexin37 (Cx37), Cx40, and Cx43, during growth and senescence in rat aorta by en face immunoconfocal microscopy and electron microscopy. Gap junction spots labeled by specific antisera against Cx37, Cx40, and Cx43 were quantified at 1 day, 7 days, 28 days, 16 months, and > or =20 months of age, and the relationship between the connexins was examined by co-localization analysis. At birth, all three connexins were abundantly expressed; the number and total area of connexin spots then declined within 1 week (p<0.05 for each connexin). From 1 week, each connexin showed a distinct temporal expression pattern. Whereas Cx43 signal decreased progressively, Cx37 signal fluctuated in a downward trend. By contrast, Cx40 maintained an abundant level until > or =20 months of age (> or =20 months vs. 28 days, p<0.05 for number and total connexin signal area). These patterns were associated with changes in endothelial cell morphology. Double-label analysis showed that the extent of co-localization of connexins to the same gap junctional spot was age-dependent [>70% at birth and 28 days old; <70% at later stages (p<0.05)]. We conclude that expression of the three connexins in aortic endothelium is age-related, implying specific intercellular communication requirements during different stages after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号