首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine if the loss of germinability and viability of beech (Fagus sylvatica L.) seeds stored at different variants of temperature (4, 20, and 30 °C) and relative humidity (RH: 45 and 75 %) is associated with a loss of membrane integrity and changes in lipid composition. Beech seeds stored for 9 weeks gradually lost viability at a rate dependent on temperature and humidity. The harmful effect of temperature increased with growing humidity. The loss of seed viability was strongly correlated with an increase in membrane permeability and with production of lipid hydroxyperoxides (LHPO), which was regarded as an indicator of peroxidation of unsaturated fatty acids. The condition of membranes was assessed on the basis of their permeability and the state of lipid components: phospholipids and fatty acids. During seed storage we observed a decline in concentration of individual phospholipids and fatty acids, proportional to the loss of seeds viability. We also detected a decrease in concentrations of α-tocopherol and sterols, which play an important role in protection of membranes against the harmful influence of the environment. Our results show that the germinability of beech seeds declines rapidly at temperature above 0 °C and growing humidity. This is due mainly to the loss of membrane integrity, caused by peroxidation of unsaturated fatty acids.  相似文献   

2.
Heterogeneity of Phospholipid Composition in the Bacterial Membrane   总被引:4,自引:4,他引:0       下载免费PDF全文
Heterogeneity in the distribution or binding of the membrane phospholipids was demonstrated in the membrane fragments released from Haemophilus parainfluenzae by treatment with ethylenediaminetetraacetic acid (EDTA)-tris(hydroxymethyl)-aminomethane (Tris). The membrane fragments released early in the EDTA-Tris treatment contained two- to fivefold higher proportions of cardiolipin and phosphatidylglycerol and less phosphatidylethanolamine as well as phospholipids with threefold lower specific activity of the phospholipid phosphate after a short pulse of (32)P than were found in the residue. Heterogeneity was best demonstrated with shorter EDTA-Tris treatments and shorter periods of growth with (32)P. EDTA-Tris treatment appeared to progressively strip phospholipids from the cells that were synthesized at progressively later times.  相似文献   

3.
Membrane fragments containing diacyl phospholipids were released from viable cells of Haemophilus parainfluenzae during incubation in ethylenediaminetetraacetic acid (EDTA)- tris(hydroxymethyl)aminomethane (Tris) buffer. The phospholipids located in the part of the membrane that was released during the EDTA-Tris treatment had markedly different proportions of fatty acids than the lipids remaining in the cell residue. Very little metabolism of the 1-linked fatty acid occurred. After a short pulse with (14)C, the specific activity of the 1-linked fatty acid was lower in the phospholipids released than in the phospholipids of the residue, indicating an earlier time of synthesis of those lipids released in the membrane fragments. During the EDTA-Tris treatment, the 2-linked fatty acid was metabolized. This metabolism may have involved phospholipase A(2) which stimulates the synthesis of fatty acids and the transfer of acyl groups to the lysophospholipid.  相似文献   

4.
Phospholipid metabolism in the fission yeast Schizosaccharomyces pombe was examined. Three enzymes of phospholipid biosynthesis, cytidine diphosphate diacylglycerol synthase (CDP-DG), phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase, were characterized in extracts of S. pombe cells. Contrary to an earlier report, we were able to demonstrate that CDP-DG served as a precursor for PI and PS biosynthesis in S. pombe. S. pombe is naturally auxotrophic for the phospholipid precursor inositol. We found that S. pombe was much more resistant to loss of viability during inositol starvation than artificially generated inositol auxotrophs of Saccharomyces cerevisiae. The phospholipid composition of S. pombe cells grown in inositol-rich medium (50 microM) was similar to that of S. cerevisiae cells grown under similar conditions. However, growth of S. pombe at low inositol concentrations (below 30 microM) affected the ratio of the anionic phospholipids PI and PS, while the relative proportions of other glycerophospholipids remained unchanged. During inositol starvation, the rate of PI synthesis decreased rapidly, and there was a concomitant increase in the rate of PS synthesis. Phosphatidic acid and CDP-DG, which are precursors to these phospholipids, also increased when PI synthesis was blocked by lack of exogenous inositol. The major product of turnover of inositol-containing phospholipids in S. pombe was found to be free inositol, which accumulated in the medium and could be reused by the cell.  相似文献   

5.
A study of the effects of glycerol deprivation on the content and metabolism of the phospholipids of a glycerol auxotroph of Staphylococcus aureus showed that (i) there was an increase in the proportions of lysylphosphatidylglycerol (LPB) and a concomitant decrease in the proportion of phosphatidylglycerol. The total phospholipid content per sample and the proportion of cardiolipin did not change, but the phosphatidic acid increased transiently and then fell to pretreatment levels. (ii) The loss of (32)P from the lipids during the chase in a pulse-chase experiment was essentially the same in phosphatidylglycerol, cardiolipin, and phosphatidic acid during glycerol deprivation or growth in the presence of glycerol. LPG lost half the radioactivity in slightly more than two doubling times when grown with glycerol. In the absence of glycerol, (32)P accumulated in LPG for about 20 min and then stopped, after which time there was no apparent turnover. (iii) During glycerol deprivation, the initial (32)P incorporation decreased sixfold compared to that of the control with glycerol. The initial incorporation into LPG decreased only 2.5-fold, whereas that of PG decreased 45-fold. (iv) During glycerol deprivation, the free fatty acid content increased from 1.2 to 12.5% of the total extractable fatty acids and then slowly decreased. The increase was largely iso- and anti-iso-branched 21-carbon-atom fatty acids. In glycerol-supplemented cultures, the major fatty acids were branched 14- to 18-carbon fatty acids. The decrease in longer chain free fatty acids after 60 min represented their esterification into lipids. (v) During glycerol deprivation ribonucleic acid synthesis and cell growth continued for 40 min and protein synthesis continued for 90 min. Then synthesis and growth stopped. (vi) After the addition of glycerol to glycerol-deprived cells, (32)P and (14)C-glycerol were incorporated into the phospholipids without lag; ribonucleic acid, protein synthesis, and cell growth began after a 5- to 10-min lag at the pretreatment rate. The initial rate of lipid synthesis after the addition of glycerol was three times greater than the growth rate. This rapid rate continued for about 25 min until the lipid content and proportions of LPG and phosphatidylglycerol were restored.  相似文献   

6.
The surfaces of BHK cells in confluent monolayers, immediately after mechanical dispersal and in logarithmically growing suspension cultures have been iodinated with 125I using the lactoperoxidase technique. Electrophoretic resolution of the labeled proteins revealed that the representation of plasma membrane proteins varies with the growth state. Trypsinization of the cells produced a drastic revision of the surfaces leaving behind root fragments of membrane components and exposing additional proteins for iodination. The rapid turnover of membrane proteins in growing BHK cells restored the plasma membrane to a state characteristic of the replicating cell within 10 h.  相似文献   

7.
The chemical analyses showed that inositol deficiency caused especially the increase in content of glucan fraction and the decrease in contents of inositol, phospholipids and free-pool fraction. Other components, however, did not change in contents in inositol deficiency. More mannan fraction and free-pool substances were found to be released from the cells in inositol deficiency than in sufficiency. The respiratory and fermentative activities were lost in inositol deficient cells of 24 hr culture, which was considered to be the consequence of unbalanced growth death. But the respiratory activity did not so much decrease in inositol deficient cells of 8 hr culture as the fermentative activity, especially the aerobic fermentative activity, did. The release of mannan fraction and the decrease in intracellular free-pool fraction were accompanied with the loss of viability.

These results suggest that inositol deficiency caused the abnormality of the cell structure and permeability, and that this abnormality may be the possible cause of loss of viability due to inositol deficiency.  相似文献   

8.
Despite the importance of triacylglycerols (TAG) and steryl esters (SE) in phospholipid synthesis in cells transitioning from stationary-phase into active growth, there is no direct evidence for their requirement in synthesis of phosphatidylinositol (PI) or other membrane phospholipids in logarithmically growing yeast cells. We report that the dga1Δlro1Δare1Δare2Δ strain, which lacks the ability to synthesize both TAG and SE, is not able to sustain normal growth in the absence of inositol (Ino(-) phenotype) at 37 °C especially when choline is present. Unlike many other strains exhibiting an Ino(-) phenotype, the dga1Δlro1Δare1Δare2Δ strain does not display a defect in INO1 expression. However, the mutant exhibits slow recovery of PI content compared with wild type cells upon reintroduction of inositol into logarithmically growing cultures. The tgl3Δtgl4Δtgl5Δ strain, which is able to synthesize TAG but unable to mobilize it, also exhibits attenuated PI formation under these conditions. However, unlike dga1Δlro1Δare1Δare2Δ, the tgl3Δtgl4Δtgl5Δ strain does not display an Ino(-) phenotype, indicating that failure to mobilize TAG is not fully responsible for the growth defect of the dga1Δlro1Δare1Δare2Δ strain in the absence of inositol. Moreover, synthesis of phospholipids, especially PI, is dramatically reduced in the dga1Δlro1Δare1Δare2Δ strain even when it is grown continuously in the presence of inositol. The mutant also utilizes a greater proportion of newly synthesized PI than wild type for the synthesis of inositol-containing sphingolipids, especially in the absence of inositol. Thus, we conclude that storage lipid synthesis actively influences membrane phospholipid metabolism in logarithmically growing cells.  相似文献   

9.
Staphylococcus aureus accumulated cardiolipin (CL) and lost phosphatidylglycerol (PG) during the stationary phase of growth. The minor lipids, phosphatidylethanolamine and phosphatidylglucose, also accumulated, whereas the lysylphosphatidylglycerol (LPG) content of the membrane remained constant as stationary phase continued. During exponential growth, the proportions and total content of phospholipids per cell remained constant. The metabolism of the phospholipids was examined under these conditions. In pulse-chase experiments, the phospholipids lost (14)C from the glycerols slower than (32)P. When the phospholipids were labeled with (14)C glycerol, the unacylated glycerols of PG and LPG lost (14)C, whereas the diacylated glycerols either accumulated or did not lose (14)C. In all experiments, the PG showed a more rapid metabolism than the LPG. When staphylococcal CL was hydrolyzed by Haemophilus parainfluenzae CL-specific phospholipase D into phosphatidic acid (PA) and PG, the incorporation of (32)P into both of the phosphates of CL was found to be parallel at both the PG and PA ends of the molecule. However, the specific activity of the (32)P at the PA end was twice that at the PG end of the molecule. The PG end of the CL apparently came from a portion of the cellular PG pool with about 20% the specific activity of the total cellular PG. The turnover of two of the glycerols of the PG portion of CL was like that of the cellular PG. The diacylated glycerol of the PG and of CL and of the membrane PG showed neither turnover nor incorporation of (14)C. Half of the radioactivity was lost from the middle glycerol of CL and the free glycerol of the cellular PG in one bacterial doubling. The diacylated glycerol from the other end of the CL molecule (the PA end) lost radioactivity almost as rapidly as the middle glycerol for 10 min. After the initial rapid loss, the turnover slowed to a rate 10 times slower than the middle glycerol, indicating that the (14)C was actually accumulating at this end of the molecule. The phosphates and glycerols involved in the hydrolysis and resynthesis of the CL molecule during exponential growth in S. aureus apparently come from different pools of PG.  相似文献   

10.
A glycerol-requiring auxotroph of Bacillus subtilis showed no net synthesis of phospholipid when deprived of glycerol. Although there was no net synthesis of phospholipid, we found that: (i) fatty acids and (32)P were slowly incorporated into phospholipid; (ii) in pulse-chase experiments, both (32)P and (14)C in the glycerol portion of the phospholipids were lost from phosphatidlyglycerol (PG) and lysylphosphatidylglycerol and accumulated in cardiolipin (CL); (iii) the proportions of the phospholipids in the membrane changed with a loss of PG and an accumulation of CL. The addition of glycerol to the glycerol-deprived cells resulted in a rapid incorporation of glycerol and restoration to the predeprivation metabolism and PG to CL ratio.  相似文献   

11.
Protein and lipid components of the pigeon erythrocyte membrane.   总被引:1,自引:0,他引:1       下载免费PDF全文
The plasma membrane of the nucleated pigeon erythrocyte was isolated by a method that is simple, reproducible and minimally disruptive, the final preparation consisting of whole cell 'ghosts', recovered at over 40% yield. Alternative methods, which yield membrane fragments, were also tested and some of their possible disadvantages demonstrated. Analysis of the protein components of the isolated membranes by gel elctrophoresis in the presence of sodium dodecyl sulphate revealed that their composition is very similar to that of the proteins of human erythrocyte membranes. However, two major proteins are unique to the nucleated cell membrane; these have apparent mol.wts. of 97000 and 57000. Also, the bands designated 4.2 (74500 mol.wt.) and 6 (35000 mol wt.) by Steck [(1974) J. Cell Biol. 62, 1-19] for the human cell membrane are absent from pigon cell membrane. Glycosylated membrane proteins could not be detected in gels stained with the periodate-Schiff-base procedure. Analysis of membrane phospholipids revealed the same components known to be present in mammalian erythrocytes, though in different proportions. These findings are discussed in the light of known physiological and biochemical differences between avian and mature mammalian erythrocytes.  相似文献   

12.
Selenomonas ruminantium, a strictly anaerobic ruminal bacterium, was grown at various dilution rates (D = 0.05, 0.25, and 0.35 h-1) under glucose-limited continuous culture conditions. Suspensions of washed cells prepared anaerobically in mineral buffer were subjected to nutrient starvation (24 to 36 h; 39 degrees C; N2 atmosphere). Regardless of growth rate, viability declined logarithmically, and within about 2.5 h, about 50% of the populations were nonviable. After 24 h of starvation, the numbers of viable cells appeared to be inversely related to growth rate, the highest levels occurring with the slowest grown population. Cell dry weight, carbohydrate, protein, ribonucleic acid (RNA), and deoxyribonucleic acid declined logarithmically during starvation, and the decline rates of each were generally greater with cells grown at higher D values. Both cellular carbohydrate and RNA declined substantially during the first 12 h of starvation. Most of the cellular RNA that disappeared was found in the suspending buffer as low-molecular-weight, orcinol-positive materials. During growth, S. ruminantium made a variety of fermentation acids from glucose, but during starvation, acetate was the only acid made from catabolism of cellular material. Addition of glucose or vitamins to starving cell suspensions did not decrease loss of viability, whereas a starvation in the spent culture medium resulted in a slight decrease in the rate of viability loss. Overall, the data indicate that S. ruminantium strain D has very little survival capacity under the conditions tested compared with other bacterial species that have been studied.  相似文献   

13.
In order to determine the feasibility of using radioactive precursors as markers for membrane phospholipids in Acanthamoeba palestinensis, the characteristics of phospholipids labeled with choline-14C and glycerol-3H were examined. Choline-14C was found to be a specific label for phosphatidyl choline. There was a turnover of the radioactive moiety of phosphatidyl choline at a rate that varied with the concentration of nonradioactive choline added to the growth medium. Radioactivity was lost from labeled phosphatidyl choline into the acid-soluble intracellular pool and from the pool into the extracellular medium. This loss of radioactivity from cells leveled off and an equilibrium was reached between the label in the cells and in the medium. Radioactive choline was incorporated into phosphatidyl choline by cell-free microsomal suspensions. This incorporation leveled off with the attainment of an equilibrium between the choline-14C in the reaction mixture and the choline-14C moiety of phosphatidyl choline in the microsomal membranes. Therefore, a choline exchange reaction may occur in cell-free membranes, as well as living A. palestinensis. In contrast to choline-14C, the apparent turnover of glycerol-3H-labeled phospholipids was not affected by large concentrations of nonradioactive choline or glycerol in the medium. The radioactivity in lipids labeled with glycerol-3H consisted of 33% neutral lipids and 67% phospholipids. Phospholipids labeled with glycerol-3H turned over slowly, with a concomitant increase in the percentage of label in neutral lipids, indicating a conversion of phospholipids to neutral lipids. Because most (~96%) of the glycerol-3H recovered from microsomal membranes was in phospholipids, whereas only a minor component (~2%) of the glycerol-3H was in the phospholipids isolated from nonmembrane lipids, glycerol-3H was judged to be a specific marker for membrane phospholipids.  相似文献   

14.
15.
Bulk membrane fragments were prepared from cells of Bacillus cereus ATCC 4342 harvested at different stages of growth and sporulation and examined for enzymes involved in electron transport functions. The presence of succinate: DCPIP oxidoreductase (EC 1.3.99.1), succinate: cytochrome c oxidoreductase (EC 1.3.2.1), NADH:DCPIP oxidoreductase (EC 1.6.99.1), NADH:cytochrome c oxidoreductase (EC 1.6.2.1), succinate oxidase [succinate: (O(2)) oxidoreductase, EC 1.3.3.1], and NADH oxidase [NADH:(O(2)) oxidoreductase, EC 1.6.3.1] were demonstrated in membrane fragments from vegetative cells, early and late stationary-phase cells, and in cells undergoing sporulation. During the transition from a vegetative cell to a spore, there was a significant increase in the levels of enzymes associated with energy production via the electron transport system. Cytochromes of the a, b, and c type were detected in all membrane preparations; however, there was a marked increase in the level of cytochromes by the end of vegetative growth which remained throughout sporulation; there were no qualitative changes in the cytochromes throughout growth and sporulation. Sporulation was inhibited by cyanide, stressing the significance of the electron transport system. Enzyme activities were partially masked in washed membrane fragments; however, unmasking (stimulation) was achieved by sodium deoxycholate, sodium dodecyl sulfate, or Triton X-100. The degree of enzyme masking was less in vegetative cell membrane fragments than in membranes prepared from stationary-phase or sporulating cells. Results indicate the development of a membrane-bound electron transport system in B. cereus by the end of growth and prior to sporulation, which results in an increased masking of a number of enzymes associated with the terminal respiratory system of the cell.  相似文献   

16.
The turnover of the plasma membrane proteins of hepatoma tissue culture cells was examined by three different methods--loss of polypeptides labeled in situ by lactoperoxidase-catalyzed iodination, loss of membrane polypeptides labeled with amino acid precursors, and loss from the membrane of fucose-labeled polypeptides. In both logarithmically growing and density-inhibited cells the proteins of the membrane are degraded with a half-life of about 100 hours. This is longer than the half-life of total cell protein, 50 to 60 hours, and longer than the doubling time of the cells, about 30 hours. Similar values for the rate of degradation of the membrane proteins were obtained by each of the three techniques. The same fucose-labeled polypeptides are present in the microsomal and the plasma membrane fractions of hepatoma tissue culture cells as analyzed by electrophoresis in dodecyl sulfate-acrylamide gels. But the fucose-labeled polypeptides were lost from the microsomal fraction at a faster rate than from the plasma membrane. Autoradiographic and double labeling techniques using 125I and 131I, or [3H]leucine and [14C]leucine were used to measure the relative rates of degradation of the proteins in the plasma membrane. All of the leucine-labeled polypeptides and the iodinated polypeptides had similar rates of degradation. These results support a model for the biogenesis of the plasma membrane in which the proteins are incorporated and removed in large structural units.  相似文献   

17.
XJ Shen  HB Wang  XQ Ma  JH Chen 《PloS one》2012,7(7):e41773
β,β-Dimethylacrylshikonin, one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we discussed the molecular mechanisms of β,β-dimethylacrylshikonin in the apoptosis of SGC-7901 cells. β,β-Dimethylacrylshikonin reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner and induced cell apoptosis. β,β-Dimethylacrylshikonin treatment in SGC-7901 cells down-regulated the expression of XIAP, cIAP-2, and Bcl-2 and up-regulated the expression of Bak and Bax and caused the loss of mitochondrial membrane potential and release of cytochrome c. Additionally, β,β-dimethylacrylshikonin treatment led to activation of caspases-9, 8 and 3, and cleavage of poly (ADP-ribose) polymerase (PARP), which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. β,β-Dimethylacrylshikonin induced phosphorylation of extracellular signal-regulated kinase (ERK) in SGC-7901 cells. U0126, a specific MEK inhibitor, blocked the ERK activation by β,β-dimethylacrylshikonin and abrogated β,β-dimethylacrylshikonin -induced apoptosis. Our results demonstrated that β,β-dimethylacrylshikonin inhibited growth of gastric cancer SGC-7901 cells by inducing ERK signaling pathway, and provided a clue for preclinical and clinical evaluation of β,β-dimethylacrylshikonin for gastric cancer therapy.  相似文献   

18.
Symbiotic associations between grasses and vertically transmitted endophytic fungi are widespread in nature. Within grass populations, changes in the frequency of infected plants are driven by influence of the endophyte on the fitness of their hosts and by the efficiency of endophyte transmission from parent plants to their offspring. During the seed stage, the endophyte might influence the fitness of its host by affecting the rate of seed viability loss, whereas the efficiency of endophyte transmission is affected by losses of viability of the fungus within viable seeds. We assessed the viability losses of Lolium multiflorum seeds with high and low level of infection of the endophyte Neotyphodium occultans, as well as the loss of viability of the fungus itself, under accelerated seed ageing and under field conditions. Starting with high endophyte-infected accessions of L. multiflorum, we produced their low endophyte-infected counterparts by treating seeds with a fungicide, and subsequently multiplying seeds in adjacent plots allowing pollen exchange. In our accelerated ageing experiments, which included three accessions, high endophyte-infected seeds lost viability significantly faster than their low endophyte-infected counterpart, for only one accession. High endophyte-infected seeds of this particular accession absorbed more water than low endophyte-infected seeds. In contrast, the endophyte lost viability within live seeds of all three accessions, as the proportions of viable seeds producing infected seedlings decreased over time. In our field experiment, which included only one accession, high endophyte-infected seed lost viability significantly but only slightly faster than low endophyte-infected seed. In contrast, the loss of viability of the endophyte was substantial as the proportions of viable seeds producing infected seedlings decreased greatly over time. Moving the seeds from the air to the soil surface (simulating seed dispersion off the spikes) decreased substantially the rate of seed viability loss, but increased the rate of endophyte viability loss. Our experiments suggest that, in ageing seed pools, endophyte viability loss and differential seed mortality determine decreases in the proportions of endophyte-infected seeds in L. multiflorum. Endophyte viability loss within live seeds contributes substantially more to infection frequency changes than differential viability losses of infected and non-infected seeds.  相似文献   

19.
After a transition from high to low oxygen tension, there was a twofold to 50-fold increase in the content of membrane-bound respiratory pigments of Haemophilus parainfluenzae, and there were concurrent changes in the metabolism of the membrane phospholipids: (i) a twofold decrease in the rate of turnover of the phosphate in all the phospholipids; (ii) a shift from simple one-phase, linear incorporation of phosphate into phospholipids to a complex biphasic incorporation of phosphate into phospholipids; and (iii) an increase in the total phospholipids with a slight increase in the proportion of phosphatidylglycerol (PG) and a slight decrease in the proportion of phosphatidylethanolamine (PE). Changes in the rates of incorporation of phosphate into the phospholipids occurred without a change in the rate of bacterial growth. When the compensatory adjustment of the proportions of the respiratory pigments reached a steady state, the total phospholipid, the rate of incorporation of phosphate into phospholipids, and the proportion of PG fell. At steady-state proportions of cytochromes, the proportion of PE and the rate of turnover of the phosphate in the phospholipids increased. All through an incorporation experiment of 1.5 divisions, the specific activity of the phosphate of PG was twice that of phosphatidic acid (PA). The phosphate of PG turned over 1.2 to 1.5 times more rapidly than the phosphate of PA in cells with high and low cytochrome levels. If the PA was an accurate measure of the precursor for the cytidine-5′-diphosphate-diglyceride, which in turn was the precursor of all the lipids, then the results of these experiments suggested that exchange reactions, in addition to synthesis from PA, were involved in phospholipid metabolism. These reactions were more sensitive to changes in oxygen concentration than was the growth rate.  相似文献   

20.
SYNOPSIS. Synthesis of RNA in the macronucleus and appearance of RNA in the cytoplasm were studied in heat synchronized Tetrahymena pyriformis GL and compared to those found under conditions of logarithmic growth (28 C) and during heat shocks (34 C). In macronuclei of logarithmically growing cells precursors were processed to 2 rRNA species (25S and 17S). In addition, another RNA (15S), more homogeneous than the RNA (8-15S) in the cytoplasm, was observed in the macronucleus. Both 17S and 25S rRNA species were found in the cytoplasm, 17S rRNA appearing more rapidly than 25S rRNA. Synthesis of rRNA was suppressed at 34 C in cells subjected to heat synchronization; 8-15S RNA synthesis appeared to be inhibited to a lesser extent. During the time preceding the first synchronized division, the synthesis of rRNAs in the macronucleus slowly recovered. Early in the cycle, almost no newly synthesized rRNAs were extracted. By 30 min after the last heat shock (EH), most of the RNA synthesized was not identified as rRNA. By 60 min after EH, the pattern of RNA synthesis had not returned to that observed in logarithmically growing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号