首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a heterologous system (transgenic Nicotiana tabacum L.) to investigate the processing, assembly and targeting of phytohemagglutinin (PHA), the lectin of the common bean, Phaseolus vulgaris L. In the bean, this glycoprotein accumulates in the protein bodies of the storage parenchyma cells in the cotyledons, and each polypeptide has a high-mannose glycan attached to Asn12 and a complex glycan on Asn60. The gene for PHA-L, dlec2, with 1200 basepairs (bp) 5 upstream and 1600 bp 3 downstream from the coding sequence was introduced into tobacco using Agrobacterium-mediated transformation (T. Voelker et al., 1987, EMBO J. 6, 3571–3577). Examination of thin sections of tobacco seeds by immunocytochemistry with antibodies against PHA showed that PHA-L accumulated in the amorphous matrix of the protein bodies in the embryo and endosperm. This localization was confirmed using a non-aqueous method to isolate the protein bodies from mature tobacco seeds. The biochemical analysis of tobacco PHA indicated that the signal peptide had been correctly removed, and that the polypeptides formed 6.4 S oligomers; tobacco PHA had a high-mannose glycan at Asn12 and a complex glycan at Asn60. The presence of the complex glycan shows that transport to the protein bodies was mediated by the Golgi complex. At seed maturity, a substantial portion of the PHA-L remained associated with the endoplasmic reticulum and the Golgi complex, as indicated by fractionation experiments using aqueous media and the presence of two high-mannose glycans on some of the polypeptides. Taken together, these data show that insertion of the nascent PHA into the endoplasmic reticulum, signal peptide processing, glycosylation, assembly into oligomers, glycan modification in the Golgi, and targeting of the protein occur faithfully in this heterologous system, although transport may not be as efficient as in bean cotyledons.Abbreviations Asn asparagine - Endo H endoglycosidase H - HPLC high-performance liquid chromatography - IgG immunoglobulin G - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - PHA phytohemagglutinin - SDS sodium dodecylsulfate - TFMS trifluoromethanesulfonic acid  相似文献   

2.
In the imaginal tissue of developing fruit flies, achaete (ac) and scute (sc) expression defines a group of neurally-competent cells called the proneural cluster (PNC). From the PNC, a single cell, the sensory organ precursor (SOP), is selected as the adult mechanosensory organ precursor. The SOP expresses high levels of ac and sc and sends a strong Delta (Dl) signal, which activates the Notch (N) receptor in neighboring cells, preventing them from also adopting a neural fate. Previous work has determined how ac and sc expression in the PNC and SOP is regulated, but less is known about SOP-specific factors that promote SOP fate. Here, we describe the role of nervy (nvy), the Drosophila homolog of the mammalian proto-oncogene ETO, in mechanosensory organ formation. Nvy is specifically expressed in the SOP, where it interacts with the Ac and Sc DNA binding partner Daughterless (Da) and affects the expression of Ac and Sc targets. nvy loss- and gain-of-function experiments suggest that nvy reinforces, but is not absolutely required for, the SOP fate. We propose a model in which nvy acts downstream of ac and sc to promote the SOP fate by transiently strengthening the Dl signal emanating from the SOP.  相似文献   

3.
The New World species of the subgenera Allotrichoma Becker and Neotrichoma (new subgenus) are revised, including a phylogenetic analysis of the species groups and subgenera within the genus Allotrichoma. For phylogenetic perspective and to document the monophyly of the genus Allotrichoma and its included subgenera and species groups, we also provide a cladistic analysis of genera within the tribe Hecamedini. The ingroup included seven exemplar congeners from within Allotrichoma. Outgroup sampling included exemplars of other genera within Hecamedini and from the putative sister group, Lipochaetini, and to root the analysis, we used an exemplar of the tribe Discocerinini. Analyses with successive weighting and implied weighting recovered a monophyletic Allotrichoma and indicated clades within the genus. Eight new species are described (type locality in parenthesis): Allotrichoma bifurcatum (Utah. Utah: Lake Shore (40°06.9'N, 111°41.8'W; 1370 m)), Allotrichoma dynatum (Oregon. Benton: Finley National Wildlife Refuge (44°24.6'N, 123°19.5'W)), Allotrichoma occidentale (Oregon. Lake: Lakeview (44 km E; Drake Creek; 42°11'N, 119°59.3'W)), Allotrichoma robustum (California. Kern: Kern River (35°16.1'N, 119°18.4'W)), Allotrichoma sabroskyi (New Mexico. Sandoval: La Cueva (Junction of Highways 126 and 4; 35°52'N, 106°38.4'W; 2342 m)), Allotrichoma wallowa (Oregon Baker: Goose Creek (35 km E Baker City; 44°49.2'N, 117°27.79'W; 825 m)), Allotrichoma baliops (Florida. Monroe: Key West (Willie Ward Park; 24°32.9'N, 81°47.9'W)), and Allotrichoma insulare (Dominica. Cabrits Swamp (15°35'N, 61°29'W)). Within Allotrichoma, we recognize three subgenera of which one, Neotrichoma (type species: Allotrichoma atrilabre), is newly described. All known species from the New World are described with an emphasis on structures of the male terminalia, which are fully illustrated. Detailed locality data and distribution maps for the New World species are provided. A lectotype is designated for Discocerina simplex Loew and a neotype is designated for Allotrichoma bezzii Becker. Allotrichoma filiforme Becker, Allotrichoma trispinum Becker, and Allotrichoma dahli Beschovski are reported as new synonyms of Allotrichoma simplex (Loew) and Allotrichoma yosemite Cresson is a new synonym of Allotrichoma atrilabre Cresson. We also clarify the status of previously described species, including those with Holarctic distributions. For perspective and to facilitate genus-group and species-group recognition, the tribe Hecamedini is diagnosed and a key to included genera is provided.  相似文献   

4.
Peanut peroxidase has been diffracted. The location of its heme and calcium moieties have been shown and their role demonstrated. However, the structure and role of its glycans is only now being elucidated. The role of three N-linked complex glycans on cationic peroxidase (cPrx) of peanut (Arachis hypogaea L cv. Valencia), as expressed by prxPNC1 in transgenic tobacco, was analyzed by site-directed replacement of each of the three glycosylation sites, N-60, N-144, and N-185 with Q, individually. The mutant prxPNC1 cDNAs with a 3' histidine-tag were expressed in transgenic tobacco. The effect on the catalytic ability, thermal stability, and unfolding properties of the mutant peroxidases, isolated from the medium of transgenic tobacco cell suspension cultures were compared with those of the wild cPrx from peanut. It was found that the ablation of the glycans at N-60 and N-144 influences the full expression of the cPrx catalytic ability. The glycan at N-185 is important for the thermostability, as is the removal of the carbohydrate chain at N-185, resulting in rapid enzymatic decrease at temperatures of 50 degrees C. All three glycans appeared to influence the folding of the protein.  相似文献   

5.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The accumulation of the Kunitz-type chymotrypsin inhibitor WCI-3 in winged bean seeds is controlled developmentally. In vitro translation experiments showed that the WCI-3 mRNA was present in 35- and 40-day-old immature seeds after flowering. The size of the in vitro translation product is about 2 000 Da larger than that of the mature WCI-3 protein. The WCI-3 cDNA clones were isolated from a gtll cDNA library of 35-day-old immature seeds by immunoscreening. A nearly full-length cDNA clone was obtained containing an open reading frame of 207 amino acid residues. The deduced sequence of the 183 carboxy terminal amino acids coincides precisely with the amino acid sequence determined for purified WCI-3. The amino terminal extension of 24 residues has the characteristics of a signal peptide. Northern hybridization analysis of total poly(A)+ RNA showed that the WCI-3 mRNA is approximately 900 nucleotides long and accumulates in 35- and 40-day-old but not in 30-day-old immature seeds.  相似文献   

7.
8.
A cDNA encoding elastase was isolated from Steinernema carpocapsae by suppression subtractive hybridization and rapid amplification of 5′ cDNA ends. The predicted protein contained a 19-aa signal peptide, a 44-aa N-terminal propeptide, and a 264-aa mature protein with a predicted molecular mass of 28,949 Da and a theoretical pI of 8.88. BLAST analysis showed 27-35% amino acid sequence identity to serine proteases from insects, mammals, fish and other organisms. The Sc-ela gene contains three exons and two introns with at least two copies in the S. carpocapsae genome. Expression analysis indicated that the Sc-ela gene was upregulated during the initial parasitic stage. Sequence comparison and evolutionary marker analysis revealed that Sc-ELA was a member of the elastase serine protease family with potential degradative, developmental and fibrinolytic activities. Homology modeling showed that Sc-ELA adopts a two β-barrel fold typical of trypsin-like serine proteases, and phylogenetic analysis indicates that Sc-ELA branched off early during elastase evolution.  相似文献   

9.
The flagellum of Methanococcus voltae is composed of four structural flagellin proteins FlaA, FlaB1, FlaB2, and FlaB3. These proteins possess a total of 15 potential N-linked sequons (NX(S/T)) and show a mass shift on an SDS-polyacrylamide gel indicating significant post-translational modification. We describe here the structural characterization of the flagellin glycan from M. voltae using mass spectrometry to examine the proteolytic digests of the flagellin proteins in combination with NMR analysis of the purified glycan using a sensitive, cryogenically cooled probe. Nano-liquid chromatography-tandem mass spectrometry analysis of the proteolytic digests of the flagellin proteins revealed that they are post-translationally modified with a novel N-linked trisaccharide of mass 779 Da that is composed of three sugar residues with masses of 318, 258, and 203 Da, respectively. In every instance the glycan is attached to the peptide through the asparagine residue of a typical N-linked sequon. The glycan modification has been observed on 14 of the 15 sequon sites present on the four flagellin structural proteins. The novel glycan structure elucidated by NMR analysis was shown to be a trisaccharide composed of beta-ManpNAcA6Thr-(1-4)-beta-Glc-pNAc3NAcA-(1-3)-beta-GlcpNAc linked to Asn. In addition, the same trisaccharide was identified on a tryptic peptide of the S-layer protein from this organism implicating a common N-linked glycosylation pathway.  相似文献   

10.
Patatin, the most abundant protein in the storage parenchyma cells of potato (Solanum tuberosum L.) tubers, is a vacuolar glycoprotein that consists of a number of closely related polypeptides and is encoded by a large gene family. To analyse the glycosylation pattern and the nature of the glycans on a single patatin polypeptide in a heterologous tissue we introduced a single chimaeric patatin gene into tobacco (Nicotiana tabacum L.) and studied its product in leaves. Patatin isolated from the leaves of transgenic tobacco plants is glycosylated at asparagine (Asn)60, and Asn90, but the third glycosylation site (Asn202) has no glycan. The two glycans are typical small complex glycans with xylose, fucose, mannose and N-acetylglucosamine in a ratio 1:1:3:2, the same ratio as found on patatin isolated from potato tubers. Expression of patatin in tobacco leaves was accompanied by the correct processing of the signal peptide, and the proper targeting of the glyco-protein to the vacuoles of mesophyll cells.Abbreviations Asn asparagine - ConA concanavalin A - EndoH endoglycosidase H - Fuc fucose - GlcNAc N-acetylglucosamine - HPLC high-performance liquid chromatography - Man mannose - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl-sulfate - Ser serine - TFMS trifluoromethanesulfonic acid - Thr threonine - Xyl xylose  相似文献   

11.
The archaea Methanococcus maripaludis strain Mm900 produces flagella that are glycosylated with an N-linked tetrasaccharide. Mass spectrometric analysis of flagellar tryptic peptides identified a number of tryptic glycopeptides carrying a glycan of mass 1036.4 Da, and fragmentation of the glycan oxonium ion indicated that the glycan was a tetrasaccharide. The glycan was purified, following extensive pronase digestion of flagellar filaments, by size-exclusion and anion-exchange chromatography. NMR spectroscopy revealed that the glycan had the following structure:Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc-Asnwhere Sug is a novel monosaccharide unit, (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. This oligosaccharide has significant similarity to the oligosaccharide that was found previously in Methanococcus voltae.  相似文献   

12.
Six leguminous lectins from the seeds of plants of the Erythrina genus, namely E. caffra (ECafL), E. cristagalli (ECL), E. flabelliformis (EFL), E. lysistemon (ELysL), E. rubrinerva (ERL), and E. vespertilio (EVL), were examined to establish their sequence homology and to determine the structure and sites of attachment of their glycans. Tryptic digests of these lectins were analyzed by capillary electrophoresis coupled to electrospray mass spectrometry (CE-ESMS). Assignments were made by comparing the molecular masses of the observed tryptic peptides with those of Erythrina corallodendron lectin (ECorL), the sequence of which had been established previously. Glycan structure and genetic variations in the amino acid sequence were probed by tandem mass spectrometry. Small differences were found between the sequences of the various lectins examined and all of them exhibited C-terminal processing resulting in proteins with a C-terminal Asn residue. The major glycan of these glycoproteins was shown to be the heptasaccharide Man(3)XylFucGlcNAc(2), consistent with previous investigations on ECL and ECorL. A minor glycan heterogeneity was observed for most lectins examined except for that of ECafL and ECorL where an extra hexose residue was observed on the reducing GlcNAc residue of the heptasaccharide.  相似文献   

13.
Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein, which by similarity contains seven EGF-like domains and a lipid-binding GPI-anchor site at the C-terminal region. The primary structure of the recombinant (rBm95) protein expressed in Pichia pastoris was completely verified by LC/MS. The four potential glycosylation sites (Asn 122, 163, 329, and 363) are glycosylated partially with short N-glycans, from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) of which, Man(8-9)GlcNAc(2) were the most abundant. O-Glycopeptides are distributed mostly towards the protein N-terminus. While the first N-glycosylated site (Asn(122)) is located between EGF-like domains 2 and 3, where the O-glycopeptides were found, two other N-glycosylated sites (Asn(329) and Asn(363)) are located between EGF-like domains 5 and 6, a region devoid of O-glycosylated Ser or Thr.  相似文献   

14.
Amin MN  Ishiwata A  Ito Y 《Carbohydrate research》2006,341(11):1922-1929
Various types of protein glycosylation have been identified from prokaryotes. Recent investigations have revealed the presence of N-linked glycoproteins in the pathogenic bacterium, Campylobacter jejuni. The structure of this glycan is unique, consisting of 5 GalNAc and 1 Glc, in addition to 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose (bacillosamine; Bac), which is N-glycosidically linked to the side chain of asparagine (Asn). We synthesized Bac from a 2-azido-2-deoxy-D-galactose derivative, which was further converted to the Asn-linked form.  相似文献   

15.
A steinernematid nematode was isolated from soil samples collected near St. John''s, Newfoundland, Canada. On the basis of its morphometry and RFLPs in ribosomal DNA spacer, it was designated as a new strain, NF, of Steinernema feltiae. Cellulose acetate electrophoresis was used to separate isozymes of eight enzymes in infective juveniles of S. feltiae NF as well as four other isolates: S. feltiae Umeå strain, S. feltiae L1C strain, Steinernema carpocapsae All strain, and Steinernema riobravis TX strain. Based on comparisons of the relative electrophoretic mobilities (μ) of the isozymes, one of the eight enzymes (arginine kinase) yielded zymograms that were distinctive for each of the isolates, except for the Umeå and NF strains of S. feltiae, which had identical banding patterns. Four enzymes (fumarate hydratase, phosphoglucoisomerase, phosphoglucomutase, and 6-phosphogluconate dehydrogenase) yielded isozyme banding patterns that were characteristic for all isolates, except for the L1C and NF strains of S. feltiae, which were identical. Two enzymes (aspartate amino transferase and glycerol-3-phosphate dehydrogenase) yielded zymograms that permitted S. carpocapsae All strain to be discriminated from the other four isolates, while the remaining enzyme (mannose-6-phosphate isomerase) was discriminatory for S. riobravis TX strain. Except for one enzyme, the isozyme banding pattern of the NF isolate of S. feltiae was the same as in the L1C strain, isolated 13 years previously from Newfoundland. Cellulose acetate electrophoresis could prove invaluable for taxonomic identification of isolates of steinernematids, provided that a combination of enzymes is used.  相似文献   

16.
The activity of enzyme I (EI), the first protein in the bacterial PEP:sugar phosphotransferase system, is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the homodimer. Using inactive EI(H189A), in which alanine is substituted for the active-site His189, substrate-binding effects can be separated from those of phosphorylation. Whereas 1 mM PEP (with 2 mM Mg(2+)) strongly promotes dimerization of EI(H189A) at pH 7.5 and 20 degrees C, 5 mM pyruvate (with 2 mM Mg(2+)) has the opposite effect. A correlation between the coupling of N- and C-terminal domain unfolding, measured by differential scanning calorimetry, and the dimerization constant for EI, determined by sedimentation equilibrium, is observed. That is, when the coupling between N- and C-terminal domain unfolding produced by 0.2 or 1.0 mM PEP and 2 mM Mg(2+) is inhibited by 5 mM pyruvate, the dimerization constant for EI(H189A) decreases from > 10(8) to < 5 x 10(5) or 3 x 10(7) M(-1), respectively. Incubation of the wild-type, dephospho-enzyme I with the transition-state analog phosphonopyruvate and 2 mM Mg(2+) also increases domain coupling and the dimerization constant approximately 42-fold. With 2 mM Mg(2+) at 15-25 degrees C and pH 7.5, PEP has been found to bind to one site/monomer of EI(H189A) with K(A)' approximately 10(6) M(-1) (deltaG' = -8.05 +/- 0.05 kcal/mole and deltaH = +3.9 kcal/mole at 20 degrees C); deltaC(p) = -0.33 kcal K(-1) mole(-1). The binding of PEP to EI(H189A) is synergistic with that of Mg(2+). Thus, physiological concentrations of PEP and Mg(2+) increase, whereas pyruvate and Mg(2+) decrease the amount of dimeric, active, dephospho-enzyme I.  相似文献   

17.
Cationic peanut peroxidase (CP) was isolated from peanut (Arachis hypogaea) cell suspension culture medium. CP is a glycoprotein with three N-linked glycan sites at Asn60, Asn144, and Asn185. ESI-MS of the intact purified protein reveals the microheterogeneity of the glycans. Tryptic digestion of CP gave a near complete sequence coverage by ESI-MS. The glycopeptides from the tryptic digestion were separated by RP HPLC identified by ESI-MS and the structure of the glycan chains determined by ESI-MS/MS. The glycans are large structures of up to 16 sugars, but most of their non-reducing ends have been modified giving a mixture of shorter chains at each site. Good agreement was found with the one glycan previously analyzed by (1)H NMR. This work is the basis for the future studies on the role of the glycans on stability and folding of CP and is another example of a detailed structural characterization of complex glycoproteins by mass spectrometry.  相似文献   

18.
The amino acid sequence and glycan structure of PD-L1, PD-L2 and PD-L3, type 1 ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves, were determined using a combined approach based on peptide mapping, Edman degradation and ESI-Q-TOF MS in precursor ion discovery mode. The comparative analysis of the 261 amino acid residue sequences showed that PD-L1 and PD-L2 have identical primary structure, as it is the case of PD-L3 and PD-L4. Furthermore, the primary structure of PD-Ls 1–2 and PD-Ls 3–4 have 81.6% identity (85.1% similarity). The ESI-Q-TOF MS analysis confirmed that PD-Ls 1–3 were glycosylated at different sites. In particular, PD-L1 contained three glycidic chains with the well known paucidomannosidic structure (Man)3 (GlcNAc)2 (Fuc)1 (Xyl)1 linked to Asn10, Asn43 and Asn255. PD-L2 was glycosylated at Asn10 and Asn43, and PD-L3 was glycosylated only at Asn10. PD-L4 was confirmed to be not glycosylated. Despite an overall high structural similarity, the comparative modeling of PD-L1, PD-L2, PD-L3 and PD-L4 has shown potential influences of the glycidic chains on their adenine polynucleotide glycosylase activity on different substrates.  相似文献   

19.
20.
Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. ABBREVIATIONS: PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号