首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
We purified and characterized a soluble human interferon gamma receptor expressed in Escherichia coli. The soluble receptor comprises the amino acids 15-246 of the encoded protein (Aguet, M., Dembic, Z., and Merlin, G. (1988) Cell 55, 273-280) and was purified from large scale fermentations through four chromatographic steps with an overall recovery of 28%. The refolded soluble receptor shows some heterogeneity on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, where it appears as the major band of 27 kDa molecular mass, accompanied by a few minor bands with molecular masses between 26 and 30 kDa. On reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis it appears as a homogeneous protein of 32 kDa molecular mass. The soluble interferon gamma receptor is an active and stable protein and is recognized by specific antibodies raised against the native receptor. When nonreduced it has the capacity to specifically bind interferon gamma and to compete for the binding of interferon gamma to the cell surface receptor. The observed heterogeneity of the soluble interferon gamma receptor under nonreducing electrophoretic conditions is probably due to different conformational forms resulting from the formation of non-native intramolecular disulfide bonds among the 8 cysteine residues present in the soluble interferon gamma receptor molecule.  相似文献   

2.
The electrophoretic mobility of radioiodinated follitropin (FSH) alpha and beta subunits as well as the alpha beta dimer changed markedly depending on the concentration of reducing agents such as dithiothreitol. The changes were more dramatic in the beta subunit than in the alpha subunit. 125I-FSH, complexed to the receptor on porcine granulosa cells or in Triton X-100 extracts, was cross-linked with a cleavable (nondisulfide) homobifunctional reagent, solubilized in sodium dodecyl sulfate without reducing agents, and electrophoresed. The cross-linked sample revealed three bands of high molecular mass, in addition to the hormone subunit and dimer bands. The band of lightest mass, 110 kDa, was the major band and the other two of 76 and 62 kDa were barely noticeable. Upon reduction with dithiothreitol, the 110-kDa band decreased while the 76- and 62-kDa bands increased, indicating the existence of disulfides between components of the 110-kDa complex. Formation of the disulfide-linked complexes requires 125I-FSH, specifically bound to the hormone receptor and cross-linking, and can be prevented with an excess of native FSH but not human choriogonadotropin. Complex formation was independent of blocking free sulfhydryl groups with N-ethylmaleimide. When the cross-linked complexes were reduced in the gel matrix and analyzed on fresh gels, the 76- and 62-kDa complexes were generated from the 110-kDa band, indicating the loss of two components. The lost components were estimated to be at 14 and 34 kDa. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22-, 14-, and 34-kDa components to the FSH alpha beta dimer. The results of reduction of the cross-linked complexes demonstrate the existence of disulfide linkage between the three components.  相似文献   

3.
The biological response of interferon gamma is mediated by binding to a specific cell-surface receptor. We investigated the stoichiometry of this binding using soluble receptors produced in prokaryotic and eukaryotic expression systems comprising the extracellular ligand-binding domain of the native protein. The ligand-receptor complexes were analyzed by cross-linking, chromatography, analytical ultracentrifugation and laser-light scattering. Cross-linking and chromatography showed that the stoichiometry of the interaction between ligand and receptor depends on the molar ratios of the two components mixed. All approaches confirmed that mixtures of ligand-receptor complexes are formed with one interferon-gamma dimer bound by one or two receptors. The soluble receptor produced in Escherichia coli mainly showed a ligand/receptor stoichiometry of 1:1, while the receptors produced in eukaryotic cells showed a stoichiometry of binding of 1:2. This apparent discrepancy is most likely due to the conformational heterogeneity of the Escherichia-coli-derived protein.  相似文献   

4.
Radioiodinated human choriogonadotropin was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to the hormone receptor on porcine granulosa cells and the solubilized sample was electrophoresed. Cross-linked samples revealed four additional bands of slower electrophoretic mobility in addition to the hormone alpha, beta, and alpha beta dimer bands. The four bands corresponded to masses of 68, 74, 102, and 136 kDa whereas the alpha beta dimer band corresponded to 50 kDa. Formation of the four bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding can be prevented by excess of native hormone but not by follitropin. A monofunctional analog of the cross-linking reagent failed to produce the four bands. They were also produced by cross-linking Triton X-100-solubilized hormone-receptor complexes. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of the cross-linked sample were treated with reagents that cleave covalent cross-links and then electrophoresed in a second dimension gel, 18-, 24-, 28-, and 34-kDa components were released, in addition to the alpha and beta subunits of the native hormone. Simultaneous peptide mapping of the cross-linked complexes in the gel matrix with Staphylococcus V8 protease or papain revealed progressive proteolysis to generate terminal fragments of 30 or 27 kDa, respectively. These fragments were unique to and commonly present in the 74-, 102-, and 136-kDa hormone-receptor complexes but were not produced by proteolysis of the cross-linked human choriogonadotropin (hCG) alpha beta dimer or the hCG alpha subunit. Apparently, the radioactively labeled segment(s) of the alpha subunit of 125I-hCG was cross-linked to the 24-kDa component. The results demonstrate the protein nature of the receptor and suggest that 125I-hCG was initially cross-linked to the 24-kDa component to generate the 74-kDa complex, then the 28- and 34-kDa components were sequentially cross-linked to the 24-kDa component in the 74-kDa complex to generate the 102- and 134-kDa complexes.  相似文献   

5.
The extracellular domain of the mouse interferon gamma receptor comprising amino acids 17-243 of the protein was produced in Spodoptera frugiperda cells infected with a recombinant baculovirus. The receptor was mainly secreted into the culture medium and was purified to homogeneity in several hundred milligram amounts. The purification procedure involved four chromatography steps and delivered a soluble and active receptor with an overall recovery of 30%. From each purification run, two pools of soluble receptor with the same interferon gamma binding capacity were isolated. Under reducing electrophoretic conditions the protein of pool I migrates as two bands of molecular masses 32 and 34 kDa and of pool II as two bands of 30 and 32 kDa. The soluble receptor of both pools carries a heterogeneous glycosylation. After deglycosylation it appears as one protein band of 27 kDa. N-linked carbohydrates contribute about 6 kDa and O-linked carbohydrates 1 kDa to its molecular mass. The nonreduced protein specifically binds interferon gamma on ligand blots and in a solid-phase binding system and competes for the binding of radiolabeled interferon gamma to the cell surface receptor. The soluble mouse interferon gamma receptor exists as a monomer in physiological buffer and binds interferon gamma in its dimeric form. It is stable at room temperature and against tryptic digestion, but is very sensitive to proteinase K digestion. The soluble mouse interferon gamma receptor produced in the insect/baculovirus expression system may prove useful to study the function of interferon gamma receptor as an antagonist of endogenous interferon gamma in the treatment of immunological and inflammatory disorders.  相似文献   

6.
The C5a receptor has been extracted in an active state from the membranes of human polymorphonuclear leukocytes with the detergents digitonin and beta-dodecyl maltoside. The solubilized receptor exhibits a single class of high affinity binding sites with a Kd = 90 pM, a value similar to that found with intact membranes. Physical studies with the soluble receptor demonstrate that it exists in two forms which differ in molecular mass. Gel filtration experiments with receptor to which C5a has been bound give an apparent molecular mass for the complex of 150-200 kDa. When the experiments were repeated with nonliganded receptor, most of the C5a binding activity eluted with an apparent mass of 150-200 kDa. However, the peak had a pronounced trailing shoulder indicating that, in the nonliganded state, a portion of the receptor population exists in a smaller form, which may be converted to the larger form on binding C5a. The molecular mass of the smaller form, estimated to be 30-70 kDa, is consistent with that of the binding subunit of the receptor. These data imply that the larger form, and therefore the bulk of the solubilized receptor, is oligomeric, a conclusion which is supported by cross-linking studies. When C5a was cross-linked to the soluble receptor two specific complexes with molecular masses of 52 and 95 kDa were formed. The former is the covalent adduct of C5a and the binding subunit of the receptor and the latter appears to be a complex between the 52-kDa species and an additional polypeptide.  相似文献   

7.
Disulfides of the lutropin receptor   总被引:1,自引:0,他引:1  
Affinity cross-linking of the lutropin receptor with 125I-human choriogonadotropin (hCG) on porcine granulosa cells produced four distinct homone-receptor complexes under reducing conditions. They contain 18-, 24-, 28-, and 34-kDa components (Ji, I., Bock, J. H., and Ji, T. H. (1985) J. Biol. Chem. 260, 12815-12821). Photoaffinity labeling and cross-linking produced 136-, 102-, and 74-kDa hCG-receptor complexes under reducing conditions and the 136-kDa complex under nonreducing conditions. In addition, the unreduced 102-kDa complex was seen in photoaffinity labeling but not in cross-linking. When the unreduced 136-kDa complex was reduced, the 102- and 74-kDa complexes were generated, indicating release of the 34- and the 28-kDa components in two steps. When the unreduced 102-kDa complex was reduced, the 74-kDa complex was produced, indicating the release of a 28-kDa component. The 74-kDa complex could not be reduced but was cleaved by alkaline treatment to produce the hCG alpha beta dimer. The results indicate that the 24-kDa component is released from the 74-kDa complex, since the apparent mass of the hCG alpha beta dimer on gels is 50 kDa. The 24-kDa component appears to be the initial site for photoaffinity labeling or cross-linking and to be disulfide linked to the 28-kDa component which is in turn disulfide linked to the 34-kDa component. These intercomponent disulfides exist in some receptors but not all. Formation of the disulfide-linked 136-kDa band required the presence of a sulfhydryl-blocking agent, N-ethylmaleimide. In particular, the 34-kDa component was vulnerable to reduction. There was no significant evidence of disulfides between the hormone and any of the receptor components.  相似文献   

8.
The detergent-soluble 125I-labeled receptor complex resulting after affinity cross-linking of 125I-heparin-binding growth factor type one (HBGF-1, m = 15.2-kDa) to HepG2 cells had an apparent molecular mass of 145-kDa, eluted from immobilized wheat germ lectin in the presence of N-acetylglucosamine, shifted to apparent mass of 128-kDa when treated with N-glycanase and shifted to apparent mass of 205-kDa after reduction, carboxymethylation and succinylation. Electrophoretic analysis of HepG2 cell membrane proteins revealed a major silver-stained protein of apparent molecular mass of 130-kDa that has correlative properties. These properties were used to purify the 130-kDa HepG2 glycoprotein to apparent homogeneity and suggest the glycoprotein as a candidate for the human HBGF receptor.  相似文献   

9.
The hydrolysis of triglycerides in plasma lipoproteins is mediated by lipoprotein lipase (LPL) that is bound to vascular endothelial cells. The specific endothelial cell surface protein(s) with which LPL associates has not been characterized. To identify this LPL binding protein(s), radioiodinated cell surface proteins from cultured bovine aortic endothelial cells were chromatographed using bovine LPL-Sepharose. A single radioiodinated protein of apparent molecular mass 220 kDa was specifically retained by the gel and eluted with 0.4 M NaCl. A LPL-binding protein of similar size was obtained after metabolic labeling of the cellular proteoglycans with 35SO4, indicating that the 220-kDa protein is a proteoglycan. After heparitinase or nitrous acid treatments the molecular mass of the LPL-binding protein decreased to approximately 50 kDa, suggesting that it contains heparin sulfate chains. A 220-kDa protein from the basal cell surface was also identified using LPL-Sepharose chromatography. 125I-LPL was cross-linked to the endothelial cell surface using ethylene glycobis (succinimidylsuccinate). A single ligand-receptor complex, approximately 350 kDa, was obtained. Heparin and unlabeled LPL decreased the cross-linking of radioiodinated LPL to the cell surface receptor. To examine whether the receptor mediates the internalization of cross-linked 125I-LPL, cells containing 125I-LPL complexed to the surface were incubated at either 37 or at 4 degrees C. The amount of 125I-LPL internalized by the cells was 74% greater at 37 degrees C than at 4 degrees C. This suggested that LPL cross-linked to the receptor was internalized in a temperature-dependent manner. Thus, a 220-kDa heparan sulfate proteoglycan functions as an endothelial cell surface receptor for LPL.  相似文献   

10.
We used photoaffinity cross-linking with the heterobifunctional cross-linker N-hydroxysuccinimidyl 4-azidobenzoate (HSAB) to covalently link polyomavirus to a mouse kidney cell surface component. The virus-HSAB combination was adsorbed to the cells and then cross-linked and isolated in monopinocytotic vesicles from the cells after endocytosis. The cross-linked product was identified on sodium dodecyl sulfate-polyacrylamide gels by the presence of a new band carrying 125I-labeled virion protein with a higher molecular mass than the normal virion protein bands. A single new band, with an apparent molecular mass of 120 kilodaltons (120 kDa), was identified by this procedure. This band was formed only in the presence of the HSAB cross-linker when virions were bound to the cells. The band also copurified with cross-linked virions when virion-containing vesicles were treated with detergent to remove the cell membrane. Antibody treatments that blocked up to 100% of virus binding and internalization also blocked cross-linking, as measured by the formation of the 120-kDa band. The 120-kDa band was characterized by preparation of antibody against the excised band from the gel. This antibody was shown to have the expected dual specificity for polyomavirus VP1 sequences and plasma membrane proteins, as analyzed on Western blots. The anti-120-kDa antibody was also shown by immunofluorescence to bind to the surface of mouse kidney cells. These data have demonstrated that molecules of possible biological significance in the binding of polyomavirus to mouse kidney cells have been cross-linked and that cell surface molecules have been identified that may be characterized further for possible receptor function in polyomavirus attachment.  相似文献   

11.
The myxoma virus T7 protein M-T7 is a functional soluble gamma interferon receptor homolog that has previously been shown to bind gamma interferon and inhibit its antiviral activities in a species-specific manner, but gene knockout analysis has suggested a further role for M-T7 in blocking leukocyte influx into infected lesions. We purified M-T7 to apparent homogeneity and showed that M-T7 is an N-linked glycoprotein that appears to be a stable homotrimer with a molecular mass of approximately 113 kDa in solution. M-T7, in addition to forming inhibitory complexes with rabbit gamma interferon, was also shown to bind to human interleukin-8, a prototypic member of the chemokine superfamily. Moreover, M-T7 was able to interact promiscuously with all members of the CXC, CC, and C chemokine subfamilies tested. Binding of human RANTES to M-T7 can be competed by rabbit gamma interferon and also by cold RANTES competitor with a 50% inhibitory concentration of 900 nM. Although M-T7 retains binding to a number of interleukin-8 N-terminal (ELR) deletion mutants, binding to mutants containing deletions in the C-terminal heparin-binding domain of interleukin-8 is abrogated. Furthermore, heparin effectively competes the interaction of M-T7 with the chemokine RANTES but not with rabbit gamma interferon. We propose that this novel M-T7 interaction with members of the chemokine superfamily may be facilitated through the conserved heparin-binding domains found in a wide spectrum of chemokines and that M-T7 may function by modulating chemokine-glycosaminoglycan interactions in virus-infected tissues.  相似文献   

12.
The calmodulin-binding domain on microtubule-associated protein 2   总被引:2,自引:0,他引:2  
Microtubule-associated protein 2 (MAP2) binds calmodulin with a stoichiometry approaching 1-1.5 mol of calmodulin/mol of MAP2 in the presence of calcium ion. The calmodulin-binding domain(s) of MAP2 were probed by cross-linking 125I-calmodulin with partially digested MAP2, by limited digestion of the preformed 125I-calmodulin-MAP2 adduct, and by cross-linking 125I-calmodulin with the projection- and assembly-promoting portions of MAP2. Cross-linking 125I-calmodulin with partially digested MAP2 resulted in radioactive adducts of approximately 300, approximately 235, approximately 205, approximately 58, and approximately 40 kDa. The radioactive adducts with smaller molecular mass became prominent with increasing time of digestion concomitant with loss of those with higher molecular size. Limited chymotryptic digestion of preformed 125I-calmodulin-MAP2 adducts also produced a approximately 58-kDa radioactive band followed later by a approximately 40-kDa band. Brief chymotryptic digestion and subsequent centrifugation of microtubules preformed with pure tubulin and MAP2 permitted separation of microtubule-bound MAP2 fragments (molecular mass = approximately 215, approximately 180, and approximately 36 kDa) from unbound fragments (molecular mass = approximately 240, approximately 180, and approximately 140 kDa). 125I-Calmodulin cross-linked only with the microtubule-bound MAP2 fragments (forming mainly the approximately 58-kDa adduct) and not with unbound MAP2 fragments. Since the apparent molecular size of calmodulin is approximately 21 kDa on these sodium dodecyl sulfate-polyacrylamide gels, the results indicate that partial digestion of MAP2 by chymotrypsin produces a approximately 37-kDa fragment which can be further degraded to a approximately 20-kDa fragment. The approximately 37-kDa fragment that is labeled corresponds to the previously identified assembly-promoting fragment that attaches to the microtubule.  相似文献   

13.
We have used bifunctional reagents to examine the subunit composition of the non-DNA-binding form of the rat and human glucocorticoid receptor. Treatment of intact cells and cell extracts with a reversible cross-linker, followed by electrophoretic analysis of immunoadsorbed receptor revealed that three proteins of apparent approximate molecular masses, 90, 53 and 14 kDa are associated with the receptor. The first of these was identified immunochemically as a 90-kDa heat-shock protein (hsp90). The complex isolated from HeLa cells contained 2.2 mol hsp90/mol steroid-binding subunit. Cross-linking of the receptor complex in the cytosol completely prevented salt-induced dissociation of the subunits. The cross-linked receptor was electrophoretically resolved into two oligomeric complexes of apparent molecular mass 288 kDa and 347 kDa, reflecting the association of the 53-kDa protein with a fraction of the receptor. Since no higher oligomeric complexes could be generated by cross-linking cell extracts under different conditions, we conclude that most of the untransformed cytosolic receptor is devoid of additional components.  相似文献   

14.
This study describes the isolation of mRNA for the murine interferon gamma receptor and its expression in frog oocytes. The binding properties and apparent molecular weight of the murine interferon gamma receptor protein synthesized in frog oocytes is similar to that found on mouse cells. This is the first report of a functional receptor for a polypeptide ligand (interferon gamma) expressed in and directly assayed on frog oocytes.  相似文献   

15.
Substantial amounts of phospholipase A2 activity were detected in bovine brain cytosol. The major phospholipase A2 activity was present in the precipitate at 40% saturation with solid ammonium sulfate. After the desaltate of the precipitate was loaded onto an Ultrogel AcA 54 gel filtration column, almost all the activity eluted in the void volume when chromatographed without 1 M KCl. However, when buffer with 1 M KCl was used as the eluent, two active peaks were obtained. One peak (peak I) eluted in the void volume, and the other (peak II) eluted with an apparent molecular mass of 39 kDa as compared with standards. The former was active with diacylglycero-3-phosphoethanolamine, whereas the latter was active with both diacylglycero-3-phosphoethanolamine and 1-alk-1'-enyl-2-acylglycero-3-phosphoethanolamine (plasmenylethanolamine). The apparent molecular mass of peak I was estimated to be 110 kDa as compared with standards on an Ultrogel AcA 34 gel filtration column. Both peaks were purified further with a hydrophobic chromatography column (AffiGel 10 coupled with plasmenylethanolamine) and then by high-resolution liquid chromatography on an MA7Q column. The phospholipase A2 obtained from peak II migrated as one main band with a 40-kDa molecular mass and two minor bands with 14- and 25-kDa molecular masses. Phospholipase A2 obtained from peak I eluted as a single peak on high-resolution liquid chromatography but contained two bands with apparent molecular masses of 100 and 110 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The platelet-derived growth factor (PDGF) receptor is a single membrane-spanning polypeptide of 180,000 daltons with a ligand-stimulatable tyrosine kinase site. We have investigated changes in the structure and association state of the receptor that are induced by ligand binding, but which precede autophosphorylation. Chemical cross-linking of PDGF-bound 32P-labeled receptor and 125I-PDGF-labeled receptor resulted in the generation of a radiolabeled cross-linked complex of 370-390 kDa. This band, as well as the 180-190-kDa PDGF receptor band, were recognized by a PDGF receptor-specific antipeptide antibody. The appearance of the 370-390-kDa band was PDGF-dependent and was seen irrespective of whether the receptor was membrane-bound, solubilized, or highly (approximately 90%) purified. Sedimentation analysis of the 125I-PDGF cross-linked receptor showed that both 180-190- and 370-390-kDa labeled species sedimented as a single peak at about 11.5 S, a position expected of a receptor dimer, demonstrating that the liganded receptor exists essentially as a dimer. In contrast, unliganded receptors sedimented as a single species at 7 S, a position consistent with a monomeric structure. The monomer-dimer interconversion was absolutely ligand-dependent and occurred independent of autophosphorylation. These results demonstrate and intimate correlation between PDGF binding and inter-receptor bond formation, and raise the possibility that the phenomenon may be causally linked to the process of kinase activation.  相似文献   

17.
Human follicle-stimulating hormone (hFSH) was acylated with N-hydroxysuccinimidyl-4-azidobenzoate (HSAB) and radioiodinated (55 microCi/micrograms) for use as a photoaffinity probe to investigate the subunit structure of the FSH receptor in calf testis. After incubation with the photoaffinity probe and photolysis with UV light, the cross-linked hormone-receptor complex was solubilized from the membrane and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of the reducing agent dithiothreitol. Autoradiography of the polyacrylamide gels revealed two major bands, 64 kDa and 84 kDa. These were equivalent in molecular mass to those observed in a previous study (Branca, A. A., Sluss, P. M., Smith, A. A., and Reichert, L. E., Jr. (1985) J. Biol. Chem. 260, 9988-9993) in which performed hormone-receptor complexes were solubilized with detergent prior to formation of covalent cross-linkages through the use of homobifunctional cross-linking reagents. Reduction with dithiothreitol resulted in the loss of radioactivity from the 84-kDa band with a concomitant increase in the intensity of the 64-kDa band. Since dithiothreitol increases the dissociation of intact radioiodinated azidobenzoyl-FSH into subunits, it is suggested that the conversion of the 84-kDa band to the 64-kDa band by dithiothreitol is due to the loss of non-cross-linked hFSH subunit from the 84-kDa band and that the two bands observed after photoaffinity labeling arise from covalent bond formation between hFSH and a receptor subunit having a relative molecular weight (Mr) of 48,000. In addition to the predominant photolabeling of the receptor to yield the 64-kDa and 84-kDa bands, several other, less intense bands (54 kDa, 76 kDa, 97 kDa, and 116 kDa) were also consistently observed on autoradiographs. The appearance of all bands, however, was inhibited by the inclusion of unlabeled hFSH in the initial binding incubation mixtures. The results of this study indicate that the calf testis FSH receptor has a multimeric structure containing at least one 48-kDa subunit and suggest the presence of other nonidentical receptor subunit proteins.  相似文献   

18.
Composition of cross-linked 125I-follitropin-receptor complexes   总被引:3,自引:0,他引:3  
Both of the alpha and beta subunits of intact human follitropin (FSH) were radioiodinated with 125I-sodium iodide and chloramine-T and could be resolved on sodium dodecyl sulfate-polyacrylamide gels. Radioiodinated FSH was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to its membrane receptor on the porcine granulosa cell surface as well as to a Triton X-100-solubilized form of the receptor. Cross-linked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65, 83, and 117 kDa, in addition to the hormone bands. The hormone alpha beta dimer band corresponded to 43 kDa. Formation of the three bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding was prevented by an excess of the native hormone but not by other hormones. A monofunctional analog of the cross-linking reagent failed to produce the three bands. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of cross-linked complexes were treated to cleave covalent cross-links and then electrophoresed in a second dimension, 18-, 22-, and 34-kDa components were released, in addition to the alpha and beta subunits of the hormone.  相似文献   

19.
This study attempted to characterize proteins cross-linked to DNA of Yoshida lymphosarcoma cells treated with methylene dimethanesulfonate (MDMS) and its hydrolytic products formaldehyde (HCHO) and methanesulfonic acid (MSA). MDMS and HCHO treatments produced a similar extent and type of DNA-protein cross-linking in Yoshida lymphosarcoma cells. All five major histones (H1, H2a, H2b, H3, and H4) were among the nuclear proteins cross-linked to DNA. Certain discrete differences were also apparent in these studies. MDMS cross-linked proteins of 29 and 48 kDa to DNA that were not observed following HCHO treatment alone, and HCHO cross-linked a 26-kDa protein to DNA that was not observed following MDMS treatment. Because semicarbazide prevented all MDMS-induced DNA-protein cross-linking, HCHO must be the component responsible for this lesion. The 26-kDa protein has been identified as an H4-H2b dimer. The formation of this dimer is particularly sensitive to MSA release on hydrolysis of MDMS because, in the presence of MSA, HCHO preferentially cross-linked an H2a-H2b dimer and a 48-kDa non-histone protein to DNA. Differences in DNA-protein cross-linking between these two agents are therefore proposed to arise from discrete changes in chromatin structure induced directly by MSA release.  相似文献   

20.
Analysis of the two-dimensional electrophoretic patterns of total radiolabeled cellular proteins derived from human orbital fibroblast cultures revealed that interferon gamma (100 U/ml) elicited significant quantitative changes in 42% of 86 randomly-selected proteins relative to untreated cultures. The most substantial up-regulation involved a protein with pI/mw map coordinates of 5.9/54,000 and a heterogenous 5 isoform protein cluster (pIs = 6.1–5.6) of approximately 47- to 50-kDa. These proteins were identified as the previously described 54-kDa protein inducible in interferon gamma-sensitive cell types and type-1 plasminogen activator inhibitor (PAI-1), respectively. Definition of PAI-1 as an interferon gamma-responsive protein in orbital fibroblasts was confirmed by immunoprecipitation using PAI-1-specific antibodies. Induction of PAI-1 and the 54-kDa protein in orbital fibroblasts, moreover, was relatively specific for interferon gamma since interferon alpha failed to initiate a similar inductive response. The synthesis of a 170 kDa protein, tentatively identified as a collagen, was decreased by approximately 80%. Analysis of the labeled proteins secreted into the culture medium revealed that interferon gamma increased the medium content of fibronectin and decreased the secretion of collagen. It would appear from these data that the inflammatory cytokine can exert regulatory effects on the synthesis of many specific proteins in orbital fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号