首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Molecular characterization of the murine interferon gamma receptor cDNA   总被引:5,自引:0,他引:5  
Interferon gamma receptors (IFN-gamma R) exhibit remarkable species specificity. In order to understand the basis for this phenomenon, we have isolated a recombinant cDNA clone corresponding to the mouse (Mu) IFN-gamma R. Microinjection of the mRNA synthesized in vitro corresponding to the cloned cDNA into Xenopus laevis oocytes resulted in the synthesis of a protein that specifically binds Mu-IFN-gamma. Analysis of murine genomic and RNA blots with the cDNA probe indicates the presence of a single gene and a single mRNA species of about 2300 bases. Sequence analysis of the cDNA encoding the Mu-IFN-gamma R and comparison with the corresponding human IFN-gamma R sequence shows about 68% conservation of the extracellular domains and 51% conservation of the cytoplasmic domains at the nucleotide level. The results indicate that, as expected, the sequence of the receptor confers species specificity for the binding of IFN-gamma to the cell surface receptor. Moreover, it was previously shown that a human factor is required in addition to the receptor for the human IFN-gamma to function in hamster or mouse cells (Jung, V., Rashidbaigi, A., Jones, C., Tischfield, J.A., Shows, T.B., and Pestka, S. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4151-4155). These results suggest an explanation for the second species-specific event required for function of the human receptor in mouse or hamster cells in that the intracellular domains are significantly different and thus cannot interact with the corresponding heterologous factor.  相似文献   

2.
The biological response of interferon gamma is mediated by binding to a specific cell-surface receptor. We investigated the stoichiometry of this binding using soluble receptors produced in prokaryotic and eukaryotic expression systems comprising the extracellular ligand-binding domain of the native protein. The ligand-receptor complexes were analyzed by cross-linking, chromatography, analytical ultracentrifugation and laser-light scattering. Cross-linking and chromatography showed that the stoichiometry of the interaction between ligand and receptor depends on the molar ratios of the two components mixed. All approaches confirmed that mixtures of ligand-receptor complexes are formed with one interferon-gamma dimer bound by one or two receptors. The soluble receptor produced in Escherichia coli mainly showed a ligand/receptor stoichiometry of 1:1, while the receptors produced in eukaryotic cells showed a stoichiometry of binding of 1:2. This apparent discrepancy is most likely due to the conformational heterogeneity of the Escherichia-coli-derived protein.  相似文献   

3.
To date, large-scale production of Cryptosporidium parvum oocysts has only been achieved by amplification in neonatal calves and sheep. Many laboratories currently depend on supplies from external sources and store oocysts for prolonged periods which results in progressive loss of viability. Six to 8-week-old interferon gamma receptor knockout (IFN gamma R-KO) mice on a C57BL/6 background were inoculated by gavage (2000 oocysts/animal). Fecal pellets were collected daily from 7 days post-infection (p.i.) up to 2 weeks p.i. Intestinal oocyst yield was assessed at days 11, 12 and 14 p.i. by homogenization of intestinal tissues. Ether extraction and one or more NaCl flotations were used to purify oocysts. Total recoveries averaged 2.6 x 10(6) oocysts/mouse from fecal material and 3.8 x 10(7) oocysts/mouse from intestinal tissues. Overall, 2.3 x 10(9) purified oocysts were obtained from 60 mice. Recovered oocysts were capable of sporulation and were shown to be infectious both in vitro and in vivo. Oocyst amplification was achieved in only 11-14 days with minimal expense. The simplicity of this method presents a practical alternative for the routine passage, maintenance and storage of C. parvum in biomedical laboratories.  相似文献   

4.
We identified a single amino acid mutation that abolished the bioactivity of human IFN gamma. The mutation was identified by screening a mutagenized IFN gamma expression library for molecules with altered biological activity. The mutant protein was expressed at high levels in Escherichia coli, and remained soluble upon purification. However, the protein was completely inactive in all IFN gamma assays investigated, exhibiting less than 0.0006% of the specific activity of native IFN gamma antiviral activity. Sequencing the plasmid DNA encoding this mutant protein showed that the histidine at position 111 of native human IFN gamma is changed to aspartic acid (IFN gamma/H111D). Other mutations at this site showed that only hydrophobic amino acids at position 111 maintain significant, though low, biological activity. Structural characterization of the IFN gamma/H111D protein by NMR as well as CD spectroscopy demonstrated that the protein has limited conformational differences from native IFN gamma. Models of the X-ray crystal structure of human IFN gamma [Ealick, P.E., W.J. Cook, S. Vijay-Kumar, M. Carson, T.L. Nagabhushan, P.P. Trotta and C.E. Bugg (1991) Science, 252, 698-702] suggest that this histidine residue is located at a severe 55 degrees bend in the C-terminal F helix. We conclude that H111 lies within or affects the receptor binding domain of human IFN gamma.  相似文献   

5.
This study describes the isolation of mRNA for the murine interferon gamma receptor and its expression in frog oocytes. The binding properties and apparent molecular weight of the murine interferon gamma receptor protein synthesized in frog oocytes is similar to that found on mouse cells. This is the first report of a functional receptor for a polypeptide ligand (interferon gamma) expressed in and directly assayed on frog oocytes.  相似文献   

6.
We show here that steroid receptor coactivator 1 (SRC-1) is a coactivator of MHC class II genes that stimulates their interferon gamma (IFNgamma) and class II transactivator (CIITA)-mediated expression. SRC-1 interacts physically with the N-terminal activation domain of CIITA through two regions: one central [extending from amino acids (aa) 360-839] that contains the nuclear receptors binding region and one C-terminal (aa 1138-1441) that contains the activation domain 2. Using chromatin immunoprecipitation assays we show that SRC-1 recruitment on the class II promoter is enhanced upon IFNgamma stimulation. Most importantly, SRC-1 relieves the inhibitory action of estrogens on the IFNgamma-mediated induction of class II genes in transient transfection assays. We provide evidence that inhibition by estradiol is due to multiple events such as slightly reduced recruitment of CIITA and SRC-1 and severely inhibited assembly of the preinitiation complex.  相似文献   

7.
Human interferon omega (omega) binds to the alpha/beta receptor.   总被引:2,自引:0,他引:2  
It was proposed that human interferon omega (omega) binds to the interferon alpha/beta receptor but not to the interferon gamma receptor. However, since no studies were performed to provide direct evidence for this hypothesis, we carried out cross-linking experiments and saturation binding assays between a 32P-labeled human interferon-alpha (Hu-IFN-alpha) and unlabeled Hu-IFN-alpha A, -beta, -gamma, and -omega. These assays demonstrated that Hu-IFN-alpha A, -beta, and -omega, but not Hu-IFN-gamma, were able to block binding of 32P-labeled Hu-IFN-alpha A to human cells. These results indicate that Hu-IFN-omega binds to the alpha/beta receptor.  相似文献   

8.
The work reported here constitutes a first step in characterizing the receptor for mouse gamma interferon at the biochemical level. The myelomonocytic cell line, WEHI-3, was the source of starting material. Iodinated recombinant mouse gamma interferon incubated with WEHI-3 cells, as well as membranes prepared from them, bound specifically to a single class of sites with a Kd of 7 x 10(-9)M. Membranes were solubilized with the non-ionic detergent octyl-beta-D-glucopyranoside. As solubilization proceeded, binding activity could be assayed by precipitating the receptor with acetone in the presence of egg phosphatidylcholine liposomes. The Kd of the receptor in association with liposomes was 13 nM. Again here, only a single class of binding activity was found, and specificity for gamma, compared to other interferons, was maintained. This is the first time that the receptor for mouse gamma interferon has been solubilized and recovered in functional form. Further characterization included at least a 200-fold enrichment of binding activity by ligand affinity chromatography, resulting in the identification of a 95 kDa protein as the most likely candidate for either the receptor or a binding subunit thereof.  相似文献   

9.
Reduction of proteins which require disulfide bonds to be stable in the folded state is accompanied by step-wise unfolding. A soluble human interferon gamma receptor produced in Escherichia coli was used to investigate the kinetics of formation of unfolding intermediates. The protein includes 8 cysteine residues forming four disulfide bonds. It was reduced by using either dithiothreitol or the thioredoxin reduction system. Reduction with dithiothreitol resulted in formation of mainly four monomeric unfolding species as visualized by sodium dodecyl sulfate-polyacrylamide gels. The enzymatically catalyzed reaction produced only small amounts of two monomeric products and mostly delivered oligomeric and polymeric forms. In both cases, the ligand binding capacity of the receptor was significantly reduced immediately after appearance of the first intermediate. The intermediates involved interchange of disulfide bonds and did not show ligand binding capacity. Some of them were recognized by specific antibodies which detect conformational epitopes on the native interferon gamma receptor. On the basis of the antibody binding, a preliminary characterization of the formed intermediates was attempted. When the soluble receptor was reduced in the presence of denaturing agents, the reduction products were different from the unfolding intermediates generated in the absence of denaturants.  相似文献   

10.
The enhancement of human natural killing activity by recombinant human gamma interferon (IFNγ) and natural human IFNγ were similar over a wide concentration range. Enhancement of natural killing activity by both interferons was neutralizable by antibody to natural IFNγ, as well as by antibody to a synthetic peptide representing the first 20 N-terminal amino acids of IFNγ provide conclusive evidence that IFNγ is responsible for the enhanced natural killing activity seen in IFNγ preparations.  相似文献   

11.
Functionally active gamma interferon (IFN-gamma) receptors consist of an alpha subunit required for ligand binding and signal transduction and a beta subunit required primarily for signaling. Although the receptor alpha chain has been well characterized, little is known about the specific role of the receptor beta chain in IFN-gamma signaling. Expression of the wild-type human IFN-gamma receptor beta chain in murine L cells that stably express the human IFN-gamma receptor alpha chain (L.hgR) produced a murine cell line (L.hgR.myc beta) that responded to human IFN-gamma. Mutagenesis of the receptor beta-chain intracellular domain revealed that only two closely spaced, membrane-proximal sequences (P263PSIP267 and I270EEYL274) are required for function. Coprecipitation studies showed that these sequences are necessary for the specific and constitutive association of the receptor beta chain with the JAK-2 tyrosine kinase. These experiments also revealed that the IFN-gamma receptor alpha and beta chains are not preassociated on the surface of unstimulated cells but rather are induced to associate in an IFN-gamma-dependent fashion. A chimeric protein in which the intracellular domain of the beta chain was replaced by JAK-2 complemented human IFN-gamma signaling and biologic responsiveness in L.hgR. In contrast, a c-src-containing beta-chain chimera did not. These results indicate that the sole obligate role of the IFN-gamma receptor beta chain in signaling is to recruit JAK-2 into the ligand-assembled receptor complex.  相似文献   

12.
The aggregation of cell surface FcRs by immune complexes induces a number of important Ab-dependent effector functions. However, despite numerous studies that examine receptor function, very little is known about the molecular organization of these receptors within the cell. In this study, protein complementation, mutagenesis, and ligand binding analyses demonstrate that human FcgammaRIIa is present as a noncovalent dimer form. Protein complementation studies found that FcgammaRIIa molecules are closely associated. Mutagenesis of the dimer interface, as identified by crystallographic analyses, did not affect ligand binding yet caused significant alteration to the magnitude and kinetics of receptor phosphorylation. The data suggest that the ligand binding and the dimer interface are distinct regions within the receptor, and noncovalent dimerization of FcgammaRIIa may be an essential feature of the FcgammaRIIa signaling cascade.  相似文献   

13.
Loss of anti-viral potency upon pH2-treatment is an inherent feature of interferon (IFN)-gamma. The phenomenon seems to be caused by dissociation of IFN-gamma homodimer into subunits upon acidification and subsequent self-association of monomers into aggregates with reduced activity after neutralization. We demonstrated that acid-stability could be engineered into human IFN-gamma without affecting its specific activity. An artificial intra-monomer disulphide bond E7C/S69C stabilizes the dimeric form of the cytokine, which retained its full bioactivity after exposure to pH2. Acidification did not modify the antigenic structure of IFN-gamma as proved by a panel of mouse anti-human IFNgamma antibodies.  相似文献   

14.
Purified natural and recombinant murine gamma interferons (MuIFN-gamma) bind at 4 degrees C to cultured L929 mouse fibroblasts with comparable receptor-binding affinity (Kd = 9 x 10(-10) M). Both 125I-labeled MuIFNs are rapidly internalized by cells at 37 degrees C, although recombinant IFN is internalized somewhat more slowly than natural IFN (t1/2 = 90 sec and 45 sec, respectively). Immunoelectronmicroscopy showed that the majority of bound recombinant MuIFN-gamma was located on the plasma membrane outside of coated areas, whereas natural interferon was found mainly in coated pits. At 37 degrees C most of the recombinant molecules entered the cytoplasm in pinocytotic vesicles, while natural interferon was internalized by the specific mechanism of receptor-mediated endocytosis [1]. However, nearly equal amounts of immunocytochemically detectable molecules of both IFNs were found in the cell nucleus within 2-3 min incubation at 37 degrees C. Thus, the process of translocation of the recombinant IFN-gamma appears to differ from that of the natural product.  相似文献   

15.
16.
17.
18.
19.
Architecture of a gamma retroviral genomic RNA dimer   总被引:2,自引:0,他引:2  
Badorrek CS  Weeks KM 《Biochemistry》2006,45(42):12664-12672
Retroviral genomes contain two sense-strand RNAs that are noncovalently linked at their 5' ends, forming a dimer. Establishing a structure for this dimer is an obligatory first step toward understanding the fundamental role of the dimeric RNA in retroviral biology. We developed a secondary structure model for the minimal dimerization active sequence (MiDAS) for the Moloney murine sarcoma virus in the final dimer state using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). In this model, two self-complementary, or palindromic, sequences (PAL1 and PAL2) form extended intermolecular duplexes of 10 and 16 base pairs, respectively. The monomeric starting state was shown previously to contain a flexible domain in which nucleotides do not form stable interactions with other parts of the RNA. In the final dimer state, portions of this initial flexible domain form stable base pairs, while previously base-paired elements lie in a new flexible domain. Thus, partially overlapping and structurally well-defined flexible domains are prominent features of both monomer and dimer states. We then used hydroxyl radical cleavage experiments to characterize the global architecture of the dimer state. Extensive regions, including portions of both PAL1 and PAL2, are occluded from solvent-based cleavage indicating that the MiDAS domain does not function simply as a collection of autonomous secondary structure elements. Instead, the retroviral dimerization domain adopts a compact architecture characterized by close packing of its constituent helices.  相似文献   

20.
Osteoclasts are the primary cells responsible for bone resorption. Osteoclast formation and bone resorption activities involve processes tightly controlled by a network of cytokines. The presence of interferon gamma (IFN-gamma) receptors on osteoclasts is a necessary prerequisite for IFN-gamma to directly affect osteoclastic activity. To date, the presence of the IFN-gamma receptor on osteoclasts has not been established. This study provides evidence that osteoclasts express the IFN-gamma receptor. Specific binding of IFN-gamma to the osteoclastic receptor stimulates osteoclastic superoxide generation. The p91 and p47 components of the NADPH oxidase increase after IFN-gamma stimulation and may account for the enhanced superoxide generation. Antisense experiments targeting p91 and p47 subunits abrogate the increased osteoclastic superoxide production stimulated by IFN-gamma. Thus, superoxide generation by osteoclasts is stimulated by activation of a functional IFN-gamma receptor on the osteoclast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号