首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Analysis of plant behavior under diverse environmental conditions would be impossible without the methods for adequate assessment of the processes occurring in plants. The photosynthetic apparatus and its reaction to stress factors provide a reliable source of information on plant condition. One of the most informative methods based on monitoring the plant biophysical characteristics consists in detection and analysis of chlorophyll a fluorescence. Fluorescence is mainly emitted by chlorophyll a from the antenna complexes of photosystem II (PSII). However, fluorescence depends not only on the processes in the pigment matrix or PSII reaction centers but also on the redox reactions at the PSII donor and acceptor sides and even in the entire electron transport chain. Presently, a large variety of fluorometers from various manufacturers are available. Although application of such fluorometers does not require specialized training, the correct interpretation of the results would need sufficient knowledge for converting the instrumental data into the information on the condition of analyzed plants. This review is intended for a wide range of specialists employing fluorescence techniques for monitoring the physiological plant condition. It describes in a comprehensible way the theoretical basis of light emission by chlorophyll molecules, the origin of variable fluorescence, as well as relations between the fluorescence parameters, the redox state of electron carriers, and the light reactions of photosynthesis. Approaches to processing and analyzing the fluorescence induction curves are considered in detail on the basis of energy flux theory in the photosynthetic apparatus developed by Prof. Reto J. Strasser and known as a “JIP-test.” The physical meaning and relation of each calculated parameter to certain photosynthetic characteristics are presented, and examples of using these parameters for the assessment of plant physiological condition are outlined.  相似文献   

2.
We identify objects from their visually observable morphological features. Automatic methods for identifying living objects are often needed in new technology, and these methods try to utilize shapes. When it comes to identifying plant species automatically, machine vision is difficult to implement because the shapes of different plants overlap and vary greatly because of different viewing angles in field conditions. In the present study we show that chlorophyll a fluorescence, emitted by plant leaves, carries information that can be used for the identification of plant species. Transient changes in fluorescence intensity when a light is turned on were parameterized and then subjected to a variety of pattern recognition procedures. A Self-Organizing Map constructed from the fluorescence signals was found to group the signals according to the phylogenetic origins of the plants. We then used three different methods of pattern recognition, of which the Bayesian Minimum Distance classifier is a parametric technique, whereas the Multilayer Perceptron neural network and k-Nearest Neighbor techniques are nonparametric. Of these techniques, the neural network turned out to be the most powerful one for identifying individual species or groups of species from their fluorescence transients. The excellent recognition accuracy, generally over 95%, allows us to speculate that the method can be further developed into an application in precision agriculture as a means of automatically identifying plant species in the field.  相似文献   

3.
Studies on plant–pathogen interactions often involve monitoring disease symptoms or responses of the host plant to pathogen-derived immunogenic patterns, either visually or by staining the plant tissue. Both these methods have limitations with respect to resolution, reproducibility, and the ability to quantify the results. In this study we show that red light detection by the red fluorescent protein (RFP) channel of a multipurpose fluorescence imaging system that is probably available in many laboratories can be used to visualize plant tissue undergoing cell death. Red light emission is the result of chlorophyll fluorescence on thylakoid membrane disassembly during the development of a programmed cell death process. The activation of programmed cell death can occur during either a hypersensitive response to a biotrophic pathogen or an apoptotic cell death triggered by a necrotrophic pathogen. Quantifying the intensity of the red light signal enables the magnitude of programmed cell death to be evaluated and provides a readout of the plant immune response in a faster, safer, and nondestructive manner when compared to previously developed chemical staining methodologies. This application can be implemented to screen for differences in symptom severity in plant–pathogen interactions, and to visualize and quantify in a more sensitive and objective manner the intensity of the plant response on perception of a given immunological pattern. We illustrate the utility and versatility of the method using diverse immunogenic patterns and pathogens.  相似文献   

4.
Several methods for determination of the antenna heterogeneity of Photosystem II from fluorescence rise curves measured with DCMU have been developed so far. Using these methods, two, three or four types of Photosystem II with respect to the antenna heterogeneity were determined. However, the accuracy of some of these methods is under debate. Here, we present a new method for the determination of the antenna heterogeneity of Photosystem II. The method is based on direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different intensities of light excitation. As several curves measured under different light conditions are fitted simultaneously by the same model, reliability and accuracy in determination of model parameters increase. Our method was applied to two plant materials with different structure of the thylakoid membrane: wheat leaves and cells of green alga Chlamydomonas reinhardtii. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The induction kinetics of the 680 nm chlorophyll fluorescence were measured on attached leaves of Kalanchoë daigremontiana R. Hamet et Perr. (CAM plant), Sedum telephium L. and Sedum spectabile Bor. (C3 plant in spring, CAM plant in summer) and Raphanus sativus L. (C3 plant) at three different times during a 12/12h day/night cycle. During the fluorescence transient the fluorescence intensity at the O, P and T-level (fO, fmax, fst,) was different for the plant species tested; this may be due to their different leaf structure, pigment composition and organization of their photosystems. The kinetics of the fluorescence induction depended on the time of preillumination or dark adaptation during the light/dark cycle but not on the type of primary CO2 fixation mechanism (C3 and CAM). For dark adapted leaves measured either at the end of the dark phase or after dark adaptation of plants taken from the light phase a higher P-level fluorescence, a higher variable fluorescence (P-O) and a larger complementary area were found than for leaves of plants taken directly from the light phase. This indicates the presence of largely oxidized photosystem 2 acceptor pools during darkness. During the light phase the fluorescence decline after the P-level was faster than during the dark phase; from this we conclude that the light adaptation of the photosynthetic apparatus (state 1→ state 2 transition, Δ pH) during the induction period proceeded faster in plants taken from the light phase than in plants taken from the dark phase.  相似文献   

6.
Paulownia witches’-broom infected by mycoplasmalike organism (MLO) has been developed several cytochemical methods for diagnosis. These methods all based on the special stain reactions or abnormal fluorescence in groups of infected sieve elements as a diseased symptom,. not really on the direct detection of MLO under light microscope. This paper deals with the demonstration of MLO specific white fluorescence after DAPI staining with GMA sections of diseased young stems. Such fluorescence was absent in sections from health plants. The results were confirmed by the ulrrastrueture of MLO and the structure of sieve elements showing from PAS-TBO stained GMA sections. The described method may not only be used in accurate diagnosis of MLO diseased in different plants, but is also worth in the studies of MLO distribution in plants, MLO dynamics in plant resting stage and MLO transmission to support the theoretical basis for protection.  相似文献   

7.
8.
The induction kinetics of the 680 nm chlorophyll fluorescence were measured on attached leaves of Kalanchoë daigremontiana R. Hamet et Perr. (CAM plant), Sedum telephium L. and Sedum spectabile Bor. (C3 plant in spring, CAM plant in summer) and Raphanus sativus L. (C3 plant) at three different times during a 12/12 h day/night cycle. During the fluorescence transient the fluorescence intensity at the O, P and T-level (fO, fmax, fst,) was different for the plant species tested; this may be due to their different leaf structure, pigment composition and organization of their photosystems. The kinetics of the fluorescence induction depended on the time of preillumination or dark adaptation during the light/dark cycle but not on the type of primary CO2 fixation mechanism (C3 and CAM). For dark adapted leaves measured either at the end of the dark phase or after dark adaptation of plants taken from the light phase a higher P-level fluorescence, a higher variable fluorescence (P-O) and a larger complementary area were found than for leaves of plants taken directly from the light phase. This indicates the presence of largely oxidized photosystem 2 acceptor pools during darkness. During the light phase the fluorescence decline after the P-level was faster than during the dark phase; from this we conclude that the light adaptation of the photosynthetic apparatus (state 1state 2 transition, pH) during the induction period proceeded faster in plants taken from the light phase than in plants taken from the dark phase.Abbreviations C3 plant plant with primary CO2 fixation on ribulose-1,5-bis-phosphate (Calvin-Benson cycle) - CAM Crassulacean Acid Metabolism  相似文献   

9.
The application of correction methods to account for re-absorption of chlorophyll fluorescence emission in leaves is subject to a number of controversies in the literature. These uncertainties lead to high discrepancies in the corrected spectral distribution of fluorescence and consequently in the interpretation of related physiological features of plants, according to the chosen method used in the process of correction. In this research, three correction methods, based on transmittance and/or reflectance measurements on leaves, were analysed comparatively. One method gave high values for the corrected fluorescence ratio between 685 nm and 737 nm (F685/F737 approximately 7 to 20 according to the different species of leaves). The two other methods were found to give similar results with corrected fluorescence ratios around a value of two (F685/F737 approximately 2). While the first method was developed in the light of empirical considerations, the latter two models are based upon defined physical approaches depicting interaction between light and matter. The theoretical basis of these methods, the validation methodologies used to support them and the similarity in the spectra corrected by light re-absorption for both models, all showed that they should be treated as confident and suitable approximations to solve the problem of light re-absorption in leaves.  相似文献   

10.
In this study, the time decay of the chlorophyll fluorescence intensity (TDCFI) of vegetation was measured based on laser‐induced fluorescence (LIF) technology with a 355 nm laser serving as the excitation light source. The pseudo‐color diagram of the TDCFI (PDTDCFIs) was proposed for use as a characteristic fingerprint for the analysis of various plant species based on variations in the fluorescence intensity over time. Compared with the steady‐state fluorescence spectra, two‐dimensional PDTDCFIs contained more spectral information, including variations in both the shape of the laser‐induced fluorescence spectra and the relative intensity. The experimental results demonstrated that the PDTDCFIs of various plant species show distinct differences, and this was successfully applied in the classification of plant species. Therefore, the PDTDCFIs of plants could provide researchers with a more reliable and useful tool for the characterization of vegetation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Dorn M  Jurk M  Schmieder P 《PloS one》2012,7(1):e29201
Light is an important environmental factor for almost all organisms. It is mainly used as an energy source but it is also a key factor for the regulation of multiple cellular functions. Light as the extracellular stimulus is thereby converted into an intracellular signal by photoreceptors that act as signal transducers. The blue-light receptor YtvA, a bacterial counterpart of plant phototropins, is involved in the stress response of Bacillus subtilis. The mechanism behind its activation, however, remains unknown. It was suggested based on fluorescence spectroscopic studies that YtvA function involves GTP binding and that this interaction is altered by absorption of light. We have investigated this interaction by several biophysical methods and show here using fluorescence spectroscopy, ITC titrations, and three NMR spectroscopic assays that while YtvA interacts with BODIPY-GTP as a fluorescent GTP analogue originally used for the detection of GTP binding, it does not bind GTP.  相似文献   

12.
A procedure for extracting and identifying plant hormones, particularly abscisic acid (ABA) and the gibberellins (GA) was developed through modification of methods described in the literature. The procedure is particularly useful for studying more than one hormone simultaneously in a given sample, and when the supply of plant material is limited. The procedure was used to isolate ABA and GA-like substances from olive tissue (i.e., leaves, buds and inflorescences). Gibberellin-like substances were identified by their action on α-amylase release from embryoless barley half-seeds. Characterization of an acidic inhibitor extracted from olive inflorescences by thin-layer chromatography, fluorescence under ultraviolet light, gas chromatography, and physiological effects on wheat coleoptile sections indicate that this inhibitor, or at least a component of it, is very similar if not identical with at least one isomeric form of synthetic abscisic acid.  相似文献   

13.
A method is described for the determination of RNA and DNA in plant tissues which depends on the effect of complex formation on the fluorescence of ethidium bromide. Previous methods were found to be inapplicable to the analysis of plant material because of the high activity of ribonuclease in tissue extracts. Treatment of extracts with bentonite overcomes this difficulty and also allows measurement of fluorescence without the need to use frontal illumination. The procedure described compares favourably with earlier methods as regards accuracy, sensitivity and simplicity.  相似文献   

14.
The consequences of biotic stress have been poorly understood, partly because its application is difficult to control and partly because its physiological consequences are highly variable. Many plant viruses are recognised on the basis of leaf symptoms that depend on localised changes to chloroplast structure and function. This paper reviews recent progress in understanding early interactions between plant viruses and the photosynthetic apparatus, using chlorophyll fluorescence analysis of novel, defined algal-virus systems and using high resolution imaging of chlorophyll fluorescence and other photosynthetic processes in higher plant systems. We then consider the consequences of viral effects on photosynthetic functioning for whole plants and populations with an emphasis on the potential interactions with other environmental factors. Early responses indicated by increase in both non-photochemical quenching of fluorescence and increased reduction state of the primary electron transport acceptor QA suggest that, not surprisingly, both photoprotective and photoinhibitory processes contribute to the accelerated local demise of the photosynthetic apparatus and symptom development. In other cases, localised accumulations of carbohydrate and source-sink imbalance following infection may inhibit gene expression, leading to altered levels of chloroplast protein complexes and enzymes of photosynthetic metabolism coincident with symptom development. Recent experiments suggest that much of the variability in plant responses to biotic stress may result from interactions with other environmental factors, such as light intensity and nutrition. Experiments suggest that virus infections may have greater effects on fitness and competitive ability in low N, high light environments than in shaded, high nutrient conditions. Some ecological implications of these observations are discussed.  相似文献   

15.
光合作用是地球上最重要的化学反应,植物内源性光诱导延迟荧光是光合作用原初过程中光系统Ⅱ作用中心P680处电荷分离效率的内在探针。延迟荧光除了受植物本身及其生长发育状况有关外,还受到其他很多环境及测量方面的影响,所以为了更好地利用延迟荧光特性技术研究植物生理特性,就必须对测量参数指标做合理的优化。本文从影响延迟荧光的激发光源的光强,激发时间及外界环境温度出发,研究延迟荧光的变化特性,为延迟荧光在植物生理特性方面的研究提供合理的理论依据。  相似文献   

16.
The present study was conducted to determine the effect of exogenous application of brassinolide (BR) on Leymus chinensis grown under shade, i.e., control (100% natural light), mild shade (70% natural light), and moderate shade (50% natural light). Shade substantially enhanced the plant growth, synthesis of photosynthetic pigments, photosynthetic efficiency, and chlorophyll (Chl) fluorescence attributes of L. chinensis as compared with control. The order of increase was mild shade > moderate shade > natural light except Chl content, where the order of increase was moderate shade > mild shade > natural light. Likewise, application of BR resulted in further exacerbation of plant height, plant fresh and dry mass, but less in case of Chl and carotenoids contents, gas-exchange characteristics, and Chl fluorescence attributes. The results conclude that shade significantly enhanced plant growth through alterations in physiological attributes of L. chinensis, while, application of BR may not further improve the plant growth under shade.  相似文献   

17.
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.

Lab-based X-ray microscopy allows high-resolution 3D imaging of intact plant samples over a wide range of sample types and sizes, filling the imaging gap between light and electron microscopy.  相似文献   

18.
The studies were carried out in order to estimate differences in the physiological state between triticale and maize plants subjected to drought stress followed by rehydration. The physiological state of the plants was evaluated by measurements of leaf water potential, net photosynthesis, transpiration and stomatal conductance. Spectrofluorimetric methods for the study of blue, green and red fluorescence were applied. We observed that the soil drought induced a greater water loss in triticale leaves than in maize and consequently caused greater injuries to the photosynthetic apparatus. Moreover, triticale plant recovery was slower than in maize plants during the rehydration phase. The effect was probably connected with the higher functional and structural disorganisation of the photosynthetic apparatus observed during drought stress in triticale. Water stress is responsible for damages to photosystem PS II. The worst light utilisation in photosynthetic light conversion was recorded as an increase in the intensity of red fluorescence. Drought stress induced a strong increase in the intensity of blue and green fluorescence in the studied species and it was still high in maize plants during the first day of rehydration. Increase in the intensity of blue and green fluorescence in maize seems to be the effect of the photoprotection mechanism which prevents damage to PS II through utilisation of excess energy.  相似文献   

19.
采用相同的分离技术,从水葫芦(Eichhornia crassipes(Mart)Solms.)和菠菜(Spinacia oleracea L.)叶片中提取叶绿体.利用吸收光谱和低温荧光光谱及皮秒荧光单光子计数技术对它们的光谱性质和光系统Ⅱ荧光寿命进行了研究.这两种叶绿体吸收光谱相似,暗示着它们都能高效吸收不同波长的光子.低温荧光光谱显示,水葫芦叶绿体两个光系统之间激发能分配平衡状态差,表明不利于该植物叶绿体高效利用吸收的光子能.采用三指数动力学模型对测定的光系统Ⅱ荧光衰减曲线拟合,水葫芦叶绿体光系统Ⅱ荧光衰减寿命分别是:138,521和1 494 ps;菠菜叶绿体荧光寿命分别是:197,465和1 459ps.并且归属了荧光组分,慢速度荧光衰减是由叶绿素堆积造成的,中等速度荧光衰减源于PSⅡ反应中心重新结合电荷组分,快速度荧光衰减归属于PSⅡ反应中心组分.基于20ps模型计算的水葫芦和菠菜叶绿体PSⅡ反应中心激发能转能效率分别是87%和91%.该结果与转能效率为100%的观点不一致.实验结果支持PSⅡ反应中心电荷分裂20 ps时间常数模型.根据转能效率,水葫芦生长速度不大于菠菜生长速度,但是,水葫芦叶绿体中含有丰富的胡萝卜素成分,其单位质量叶绿体吸收光能大于单位质量菠菜叶绿体吸收的量.实验结果还暗示植物叶绿体体系传能高效,接近于100%.  相似文献   

20.
Indole-3-acetic acid (IAA) contents in plant extracts were determined spectrofluorometrically after conversion of the compound into indolo-α-pyrone. The method is sensitive and accurate and showed good reproducibility. The values obtained by this method corresponded well with those obtained with the Avena coleoptile straight-growth assay. Impurities in extracts often cause various difficulties. Colored compounds influence the readings and may even make indole-3-acetic acid determination impossible by strong quenching of the fluorescence light. Insoluble compounds can be formed in the reaction and cause increased opalescence and light scattering which interferes with the fluorescence measurements. The necessities for the method to be reliable are that the insoluble compounds are removed or brought into solution and that the exciting light is sufficiently monochromatic. Indolo-α-pyrone is fairly stable in the dark but is rapidly broken down by UV radiation. This decay may be used as a check to see if the measured light represents fluorescence of indolo-α-pyrone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号