首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plains anthropologist》2013,58(69):161-174
Abstract

The Murray site (5 BL 65) “is a tundra game drive near the summit of Mount Albion, Boulder County, Colorado. Rock walls and lines of cairns at the site were used in driving large grazing animals from a broad saddle onto a narrow ridgecrest, where they were killed from ambush by hunters concealed in shallow, rock-rimmed pits. Geological, lichenometric, and radiocarbon dating show that the walls and pits were constructed between about 950 and 1000 yr. BP. Initial use of the system was by people related to the Hog Back Phase (Nelson 1971), who wintered in the Front Range foothills, and who hunted north and south along the continental divide in summer and fall. The site was later modified and re-used by an unidentified Late Prehistoric complex.  相似文献   

2.
Summary A mid-latitude, Northern Hemisphere alpine vegetation in the Colorado Rocky Mountains was suitable for analysis by syntaxonemie and numerical methods, which interpreted the Braun-Bianquet association data, distributed by habitat and vegetation dominance types, correspondingly. Classification and ordination yielded complementary, interpretable results, which combined were more informative than results of either technique alone. Syntaxonomic results can faeilitate the interpretation of numerical results; the syntaxonomic relationships can be clarified by the results of numerical analysis.Alliances and orders of the Braun-Blanquet hierarchy, and their diagnostic taxa groups were derived by numerical methods from an association/taxa matrix. On the basis of this matrix, numerical methods demonstrated some of the environmental gradient complexes controlling the compositional variation. The compositional distinctiveness and uniformity of orders and alliances parallel environmental distictiveness and uniformity.The following attributes of the sampled vegetation and environment were probably responsible for the successful combination of syntaxonomic and numerical results: 1. The sampled area as a geographically limited universe, characterized by relative environmental, biotic, and historical distinctiveness and uniformity, 2. The wide range, high diversity, and clear denfinition of habitat and vegetation dominance types. Because it effectively summarizes and simplifies field data, syntaxonomy can play an important role in building local vegetatio models.Most of the figures in this paper are from a book version of a University of Colorado, Department of Environmental, Population, and Organismic Biology, Ph. D. thesis which was produced at the Institute of Arctic and Alpine Research. I would like to thank Dr. P.J. Webber, the thesis advisor, for his support, for suggesting the numerical methods, and for computer programs which were written by W.F. Reid. Vicki Dow, Marilyn Joel, and Karen Sproul drafted the majority of figures. I am grateful to Gwen Archer for editorial help.  相似文献   

3.
The period when the snowpack melts in late spring is a dynamic time for alpine ecosystems. The large winter microbial community begins to turn over rapidly, releasing nutrients to plants. Past studies have shown that the soil microbial community in alpine dry meadows of the Colorado Rocky Mountains changes in biomass, function, broad-level structure, and fungal diversity between winter and early summer. However, little specific information exists on the diversity of the alpine bacterial community or how it changes during this ecologically important period. We constructed clone libraries of 16S ribosomal DNA from alpine soil collected in winter, spring, and summer. We also cultivated bacteria from the alpine soil and measured the seasonal abundance of selected cultured isolates in hybridization experiments. The uncultured bacterial communities changed between seasons in diversity and abundance within taxa. The Acidobacterium division was most abundant in the spring. The winter community had the highest proportion of Actinobacteria and members of the Cytophaga/Flexibacter/Bacteroides (CFB) division. The summer community had the highest proportion of the Verrucomicrobium division and of β-Proteobacteria. As a whole, α-Proteobacteria were equally abundant in all seasons, although seasonal changes may have occurred within this group. A number of sequences from currently uncultivated divisions were found, including two novel candidate divisions. The cultured isolates belonged to the α-, β-, and γ-Proteobacteria, the Actinobacteria, and the CFB groups. The only uncultured sequences that were closely related to the isolates were from winter and spring libraries. Hybridization experiments showed that actinobacterial and β-proteobacterial isolates were most abundant during winter, while the α- and γ-proteobacterial isolates tested did not vary significantly. While the cultures and clone libraries produced generally distinct groups of organisms, the two approaches gave consistent accounts of seasonal changes in microbial diversity.  相似文献   

4.
5.
1. Populations of a number of sub‐tropical stream insect species have been found to show unexpected patterns of genetic variation, with more differences between samples from the same stream than between whole streams or between subcatchments. Many samples also showed deviations from Hardy–Weinberg proportions. It has been proposed that these patterns result from limited numbers of matings contributing to a given stream reach, because adults emerge throughout the year, and low levels of larval drift between reaches. These patterns may be less likely in a northern hemisphere montane species with synchronous emergence of adults and high levels of drift. We tested the hypothesis that patterns of genetic variation in a montane mayfly from the Rocky Mountains, Colorado, would reflect a pattern of ‘isolation by distance’ with samples from the same creek being more similar than samples from different creeks and that deviations from Hardy–Weinberg proportions would be minimal. 2. Based on allozyme variation, the hypothesis of minimal deviations from Hardy–Weinberg proportions was not supported and there was no evidence of isolation by distance. Nevertheless the levels of differentiation among samples from within the same stream were less than those reported for most subtropical species. 3. Results from analysis of a fragment of the cytochrome oxidase gene (subunit 1) revealed contrasting patterns. The levels of genetic differentiation were an order of magnitude higher between streams than among samples within streams. In addition, although there was no significant isolation by distance effect overall, a nested clade analysis provided evidence for restricted gene flow with isolation by distance for some clades. 4. We suggest that these contrasting results may reflect the differences in male and female dispersal patterns. While differentiation at nuclear gene markers (allozymes) give information about both male and female dispersal, mitochondrial DNA markers reflect only female dispersal. We suggest that in this species, female dispersal may be more restricted, perhaps mostly along stream channels, whereas male dispersal is more widespread. An alternative explanation for the different results is the different evolutionary rates of the mitochondrial and nuclear markers.  相似文献   

6.
Fens are widely distributed wetlands worldwide and provide vital habitat for plant and animal species in mountainous regions. Alpine fens are rare in the Rocky Mountains and concentrated in the San Juan Mountains where broad regions at high elevation have relatively level topography and suitable climate to favor peat accumulation. Studies of montane and boreal peatlands have identified water chemistry as a main driver of vegetation composition. This study investigated whether similar drivers of vegetation composition are important for alpine and subalpine fens in the San Juan Mountains of Colorado, USA. Water chemistry variables were most important in structuring subalpine and alpine fen vegetation. However, these variables explained considerably less variation in alpine than subalpine fen vegetation. In addition, lower variance of water chemistry in alpine fens did not lead to lower beta diversity of vegetation in alpine than in subalpine fens. Although alpine and subalpine fen vegetation supports similar beta diversity, key differences occur in the environmental drivers of their vegetation composition.  相似文献   

7.
Vegetational zonation in the Rocky Mountains   总被引:1,自引:0,他引:1  
  相似文献   

8.
Variation of CH4 emissions over a three-year period was studied in a reed-dominated (Phragmites australis) littoral transect of a boreal lake undergoing shoreline displacement due to postglacial rebound. The seasonal variation in plant-mediated CH4 emissions during open-water periods was significantly correlated with sediment temperature. The highest plant-mediated emission rates (up to 2050 mg CH4 m–2 d–1) were found in the outermost reed zone, where culms of the previous growing seasons had accumulated and free-floating plants grew on the decomposing culms. In reed zones closer to the shoreline as well as in mixed stands of reed and cattail, the maximum daily rates were usually > 500 mg CH4 m–2 d–1. The total plant-mediated CH4 emission during the open-water period was significantly correlated with the seasonal maximum of green shoot biomass. This relationship was strongest in the continuously flooded (water depth > 25 cm) outermost zones. In this area, emissions through ebullition were of greatest importance and could exceed plant-mediated emissions. In general, total emissions of the open-water periods varied from ca. 20 to 50 g CH4 m–2 a–1, but in the outermost reed zone, the plant-mediated emissions could be as high as 123 g CH4 m–2 a–1; ebullition emissions from this zone reached > 100 g CH4 m–2 a–1. The proportion of CH4 released in winter was usually < 10% of annual emissions. Emissions of CH4 were higher in this flooded transgression shore the than those measured in boreal peatlands, but the role of ancient carbon stores as a substrate supply compared with recent anthropogenic eutrophication is unknown.  相似文献   

9.
10.
11.
South Park is a high‐elevation, semi‐arid, treeless intermountain basin in central Colorado. A few extreme rich fens occur on the western margin and in the center of South Park where regional and local groundwater flow systems discharge to the ground surface. Over the past 40 years there has been extensive peat mining in these fens, but restoration methods have yet to be developed and successfully applied. The first part of this study compared the naturally reestablished vegetation on six mined peatlands with six pristine sites, while the second part of the study tested different revegetation techniques in 27 plots with varying depths to the water table. The six mined sites had only 30 plant species as compared with 122 species in the unmined sites; 43% of the species in the mined sites were not present in the undisturbed fens. Even after 40 years the sedges and willows that dominate the undisturbed sites were largely absent on the mined sites. The revegetation experiments seeded eight species, transplanted Carex aquatilis (water sedge) seedlings, transplanted rhizomes from six species, and transplanted four species of willow cuttings. Of the eight species seeded, only Triglochin maritima (arrowgrass) germinated and established seedlings. C. aquatilis seedlings, rhizome transplants of C. aquatilis, Kobresia simpliciuscula (elk sedge), and Juncus arcticus (arctic rush), and willow cuttings all had differing patterns of survival with respect to the annual maximum height of the water table. These results indicate that the dominant species can be successfully reintroduced to mined surfaces with the appropriate hydrologic conditions, but human intervention will be necessary to rapidly re‐establish these species. The slow rate of peat accumulation means that restoration of the mined fens will require hundreds, if not thousands, of years.  相似文献   

12.
13.
Designing monitoring programs to evaluate trends in low-density wildlife species at regional scales is challenging given difficulties detecting uncommon organisms distributed in potential habitats over large spatial extents. The northern goshawk (Accipiter gentilis) has been petitioned for listing under the Endangered Species Act and the review of the petition indicated a need for information on population trend. To evaluate trends in goshawk populations, the U.S. Forest Service developed the Northern Goshawk Bioregional Monitoring Design to estimate goshawk occupancy over broad spatial extents. We adapted and implemented this design to approximately 30,600 km2 of 88,128 km2 of National Forest System lands in the Forest Service Rocky Mountain Region, including portions of Colorado, Wyoming, and South Dakota. We developed a stratified random design to monitor goshawk occupancy in sampling units, defined by primary and secondary habitat quality as well as accessibility. To define habitat quality, we examined a time series for 58 previously located nesting territories. Using logistic regression, we found that the dominant conifer species and status of aspen in postfledging zones best characterized high-quality goshawk nesting habitat. We applied model results to stratify 4,445 sampling units based on habitat quality and further stratified sampling units based on accessibility into easy and difficult access categories. We conducted field sampling during the goshawk breeding season in the summer of 2006 to estimate detection probabilities and occupancy rates. Within our sampling frame, we sampled 51 sampling units and estimated goshawk occupancy of 0.329 (95% CI: 0.213–0.445). Occupancy within primary strata (high quality) sampling units was 0.811 (SE = 0.113), whereas occupancy in secondary strata (lower quality) sampling units was 0.124 (SE = 0.067). Future implementation of this monitoring program can achieve 0.8 power to detect 30–40% declines in with 140 sampling units. Our implementation of a stratified sampling design to monitor occupancy of goshawks at a region-wide scale reduced the number of sampling units in each administrative unit and focused our efforts on those areas most likely to have goshawks. © 2011 The Wildlife Society.  相似文献   

14.
I use cross-cultural ethnographic data to explore the relationship between male and female subsistence labor among hunter-gatherer populations by examining data regarding resource procurement, time allocation, and task differentiation between the sexes relative to dependence on hunted foods. The findings indicate that female foragers generally perform a variety of nonsubsistence collection activities and preferentially procure high-return resources in hunting-based economies. I develop ideas about predictable relationships concerning the amount of time female foragers expend on subsistence and technological tasks relative to the dietary contribution of meat. I then use ethnographic trends to evaluate archaeological assumptions regarding the sexual division of labor in prehistoric foraging contexts, focusing on the dichotomous views of Clovis labor organization. I argue that archaeological interpretations of prehistoric labor roles in hunting-based foraging societies are commonly polarized between stereotypical views of male and female subsistence behaviors. I develop an interpretation of Early Paleoindian labor organization, emphasizing female labor in the production of material goods and the procurement of low-risk plant and animal resources based on global economic trends among foragers.  相似文献   

15.
16.
Monitoring rare and elusive carnivores is inherently challenging because they often occur at low densities and require more resources to effectively assess status and trend. The fisher (Pekania pennanti) is an elusive mesocarnivore endemic to North America; in its western populations it is classified as a species of greatest conservation need. During winter of 2018–2019, we deployed remotely triggered cameras in randomly selected, spatially balanced 7.5-km × 7.5-km grid cells across a broad study area in western Montana, Idaho, and eastern Washington, USA. As part of this large-scale, multi-state monitoring effort, we conducted an occupancy assessment of the Northern Rocky Mountain fisher population at a range-wide scale. We used non-spatial occupancy models to determine the current extent of fisher occurrence in the Northern Rocky Mountains and to provide baseline occupancy estimates across a broad study area and a refined sampling frame for future monitoring. We used a spatial occupancy model to determine patterns in fisher occurrence across their Northern Rocky Mountain range while explicitly correcting for spatially induced overdispersion. Additionally, we assessed factors that influenced fisher occurrence through covariate occupancy modeling that considered predicted fisher habitat, site-level environmental characteristics, and the influence of available harvest records (incidental and regulated). We detected fishers in 32 out of 318 (10%) of our surveyed cells, and estimated that overall, 160 (14%; 95% CI = 115–218) of 1,143 grid cells were occupied by fishers. Fisher occupancy was positively associated with our stratum that contained cells with a greater proportion of predicted fisher habitat and with proximity to nearest 2000–2015 harvest location. Fisher occupancy was weakly and positively associated with increased canopy cover. Our spatial model identified 2 areas with higher predicted occupancy: a large area across the Idaho Nez Perce-Clearwater National Forest, and a smaller area in the Cabinet Mountain Range crossing the northern border of Idaho and Montana. We used spatial occupancy results from our original sampling frame to create a biologically derived refined sampling frame for future monitoring. Within the bounds of our refined sampling frame, we estimated that 155 (22%; 95% CI = 110–209) of 700 grid cells were occupied by fishers. By incorporating our increasing understanding of fisher habitat with contemporary analytical techniques, we defined current range-wide occupancy of the Northern Rocky Mountain fisher population, identified core areas of fisher occurrence for future conservation efforts, and used our model results to create a refined sampling frame for future fisher monitoring in the Northern Rocky Mountains.  相似文献   

17.
ABSTRACT Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.  相似文献   

18.
Small headwater fens at high elevations exist in the dry climatic regime of western Colorado, despite increasing demands for water development since the 1800’s. Fens on Grand Mesa have accumulated plant material as peat for thousands of years due to cold temperatures and consistently saturated soils. The peatlands maintain unique plant communities, wildlife habitat, biodiversity, and carbon storage. We located and differentiated 88 fens from 15 wet meadows and 2 marshes on Grand Mesa. Field work included determining vegetation, soils, moisture regimes, and impacts from human activities. All fens were groundwater-supported systems that occurred in depressions and slopes within sedimentary landslide and volcanic glacial till landscapes. Fens occupied 400 ha or less than 1 % of the 46,845 ha research area and ranged in size from 1 to 46 ha. Peat water pH in undisturbed sites ranged from 4.3 to 7.1. Most fens had plant communities dominated by sedges (Carex) with an understory of brown mosses. Variation in vegetation was controlled by stand wetness, water table level, organic C, conductivity (EC), and temperature °C. Fen soils ranged from 13.6 to 44.1 % organic C with a mean of 30.3 %. Species diversity in fens was restricted by cold short growing seasons, stressful anaerobic conditions, and disturbance. Multivariate analysis was used to analyze relationships between vegetation, environmental, and impact variables. Stand wetness, water table level, OC, electrical conductivity (EC), and temperature were used to analyze vegetation variance in undisturbed fens, wet meadows, and marshes. Vegetation composition in impacted fens was influenced by flooding, sedimentation, stand wetness, water table level, OC, EC, and temperature. Hydrologically modified fens supported 58 plant species compared to 101 species in undisturbed fens. Analysis of historical 1936–2007 aerial photographs and condition scalars helped quantify impacts of human activities in fens as well as vegetation changes. Fourteen fens had evidence of peat subsidence, from organic soil collapse, blocks of peat in the margins, soil instability, and differences in surface peat height between the fen soil surface and the annually flooded soil surface. Of 374 ha of fens in the Grand Mesa study area, 294 ha (79 %) have been impacted by human activities such as ditching, drainage, flooding, or vehicular rutting. Many fens had little restoration potential due to severe hydrological and peat mass impacts, water rights, or the cost of restoration.  相似文献   

19.
Aim The purpose of this study was to evaluate evidence related to the occurrence of a hypothesized Wisconsinan glacial refugium along the eastern slopes of the Rocky Mountains in western Canada. Location The study area was located ≈60 km south of Hinton, Alberta. The area of interest occurred within the vicinity of the abandoned early 1900s coal mining town known as Mountain Park (52°55 N, 117°16 W). Methods Contemporary botanical, palynological, and geomorphic information for the Mountain Park and surrounding area was compiled. For comparative purposes, vascular and nonvascular floristic lists were developed from available literature for five national parks along the Canadian cordilleran. All species were classified according to their phytogeographical affiliations. Results The available data suggested that most of the Mountain Park area was glaciated during the Wisconsinan, except possibly at high elevations (> 2075–2255 m above sea level). Palynological evidence from the surrounding area indicated that coniferous forest developed in the area after 11,400 years BP . If vegetation did exist in the Mountain Park area before 11,400 years BP , it would probably have been tundra. The known Mountain Park area flora (554 species) contained only one vascular and six nonvascular species with an exclusively arctic-alpine affiliation. A comparison of Mountain Park flora with five other locations indicated that vascular species were more strongly associated with areas further south. No significant statistical difference (Chi-square Goodness of Fit, P< 0.05 level) was found among the nonvascular floras. Main conclusions Late Wisconsinan and postglacial migrations were considered to be stronger ecological possibilities for explaining the current vascular flora of the Mountain Park area than in situ survival. Some nonvascular species may have survived in high elevation nunatak areas during glaciation. These circumstances were probably similar to more interior Rocky Mountain locations which are known to have been glaciated during the Wisconsinan.  相似文献   

20.
Abstract: In 1999 Canada lynx (Lynx canadensis) were reintroduced to the southern Rocky Mountains and in 2000 the species was listed as threatened under the Endangered Species Act in the contiguous United States (Colorado Division of Wildlife 2000, U.S. Fish and Wildlife Service 2000). To better evaluate the progress of this reintroduction, we conducted field studies to estimate population densities of snowshoe hares (Lepus americanus), the primary prey of lynx in Colorado, USA. We conducted our field studies in southwestern Colorado in winters 2002 and 2003. We estimated population densities in forested stands of mature Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) and mature lodgepole pine (Pinus contorta) using mark-recapture data and 3 methods for estimating effective area trapped: half trap interval, mean maximum distance moved (MMDM), and half MMDM. In Engelmann spruce-subalpine fir, we found density estimates ranged from 0.08 ± 0.03 (SE) hares/ha to 1.32 ± 0.15 hares/ha and in lodgepole pine, density estimates ranged from 0.06 ± 0.01 hares/ha to 0.34 ± 0.06 hares/ha, depending on year and method used for estimating effective area trapped. Our density estimates are similar to those reported at the low phase of the hare cycle in populations to the north (<0.1–1.1 hares/ha), where Canada lynx persist (Hodges 2000a). Although density estimates are a useful comparative tool, they depend upon methods used to estimate effective area trapped. Therefore, we urge caution in comparing our density estimates with those from other areas, which may have used dissimilar methods. We also examined effects of temperature and moon phase on capture success of snowshoe hares; extremely low temperatures affected capture success but moon phase did not. Capture success can be improved by trapping snowshoe hares at temperatures above their lower critical temperature (Tlc). If abundance estimates are derived from mark-recapture studies then effects of temperature should be included when modeling capture probabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号