首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of nanomanipulation techniques has given investigators the ability to manipulate single biomolecules and to record mechanical events of biomolecules at the single molecule level. The techniques were developed to elucidate the mechanism of molecular motors. We can directly monitor the unitary process of the mechanical work and the energy conversion processes by combining these techniques with the single molecule imaging techniques. Our results strongly suggest that the sliding movement of the actomyosin motor is driven by Brownian movement. Other groups have reported data that are more consistent with the lever arm model. These methods and imaging techniques enable us to monitor the behavior of biomolecules at work and will be applied to other molecular machines.  相似文献   

2.
Kitamura K  Yanagida T 《Bio Systems》2003,71(1-2):101-110
The epoch-making techniques for manipulating a single myosin molecule have recently been developed, and the unitary mechanical reactions of a single actomyosin, muscle motor molecule, are directly measured. The data show that the unitary mechanical step during sliding along an actin filament of approximately 5.5 nm, but groups of two to five rapid steps in succession produce displacements of approximately 11-30 nm. The instances of multiple stepping are produced by single myosin heads during one biochemical cycle of ATP hydrolysis. Thus, the coupling between ATP hydrolysis cycle and mechanical step is variable, i.e. loose-coupling. Such a unique operation of actomyosin molecules is different from that of man-made machines, and most likely explains the flexible and effective mechanisms of molecular machines in the biosystems.  相似文献   

3.
Recent progress in single-molecule detection techniques is remarkable. These techniques have allowed the accurate determination of myosin-head-induced displacements and how mechanical cycles are coupled to ATP hydrolysis, by measuring individual mechanical events and chemical events of actomyosin directly at the single-molecule level. Here we review our recent work in which we have made detailed measurements of myosin step size and mechanochemical coupling, and propose a model of the myosin motor.  相似文献   

4.
Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility.  相似文献   

5.
There has been a great deal of interest in the regulation of muscle contraction. Prior biochemical studies have demonstrated that the binding of regulated actin to S-1-ATP is unchanged at low Ca2+, even though the ATPase activity of regulated actomyosin is inhibited under these conditions. Prior structural studies using X-ray diffraction techniques have suggested that the tropomyosin-troponin complex may move and inhibit the actomyosin interaction at low Ca2+ (i.e., steric blocking). In physiologic fiber experiments, “weak” binding crossbridges have been found to bind to the actin filament at low Ca2+, especially at low ionic strength, and other experiments have suggested that Pi release is not directly regulated by calcium. In biochemical studies in the absence of ATP, inhibition of the binding of strong binding states have been reported in both equilibrium and transient kinetic studies. The current work suggests that all of these observations can be explained in terms of a six-state model in which regulation affects one particular actomyo sin state that contains both strongly bound ADP and Pi. This further implies that regulation affects both a kinetic transition as well as a weak binding constant.  相似文献   

6.
Adenosine triphosphate (ATP) turnover drives various processive molecular motors and adenosine diphosphate (ADP) release is a principal transition in this cycle. Biochemical and single molecule mechanical studies have led to a model in which a slow ADP release step contributes to the processivity of myosin-V. To test the relationship between force generation and ADP release, we utilized optical trapping nanometry and single molecule total internal reflection fluorescence imaging for simultaneous and direct observation of both processes in myosin-V. We found that ADP was released 69 ± 5.3 ms after force generation and displacement of actin, providing direct evidence for slow ADP release. As proposed by several previous studies, this slow ADP release probably ensures processivity by prolonging the strong actomyosin state in the ATP turnover cycle.  相似文献   

7.
Cell contractility is a prominent mechanism driving multicellular tissue development and remodeling. Forces originated by the actomyosin cytoskeleton not only act within the cell body but can also propagate many layers away from the contraction source and grant tissues the ability to organize collectively and to achieve robust remodeling through development. Tissue tension is being thoroughly investigated in model organisms and increasing evidence is revealing the major role played by the communication, dynamics and propagation of cell-to-cell physical forces in multicellular remodeling. Recently, pulsed-laser-based surgery has fostered in vivo experimental studies to investigate intracellular and supracellular forces in action. The technique offers a unique method to perturb mechanical equilibrium in a subpopulation of cells or in a single cell, while the overall tissue remains intact. In particular, improved ablation precision with short laser pulses and the combination of this technique with biophysical models now allow an in-depth understanding of the role of cellular mechanics in tissue morphogenesis. We first characterize laser ablation modes available to perform intracellular, cellular, or multi-cellular ablation via the example of the model monolayer tissue of the amnioserosa of Drosophila by relating subnanosecond laser pulse energy to ablation efficiency and the probability of cavitation bubble formation. We then review recent laser nanosurgery experiments that have been performed in cultured cells and that tackle actomyosin mechanics and provide molecular insights into force-sensing mechanisms. We finally review studies showing the central role of laser ablation in revealing the nature and orientation of forces involved in intracellular contractility and force mechanosensing in tissue development, e.g., axis elongation, branching morphogenesis, or tissue invagination. We discuss the perspectives offered by the technique in force-based cell-cell communication and mechanosensing pathways.  相似文献   

8.
Both ADP production and tension have been measured in segments of chemically skinned fibers contracting at different Ca2+ concentrations. Full mechanical activation occurred between pCa 7.00 and pCa 6.50. The total ATPase was due to both actomyosin and non-actomyosin ATPase. Actomyosin ATPase was observed at pCa 7.09 without accompanying tension. The Ca2+ dependence of tension was steeper than actomyosin ATPase. This finding implies some rate constants of the mechano-chemical cycle are Ca2+ dependent. Non-actomyosin ATPase was measured in fibers stretched beyond overlap of the thick and thin filaments. Sarcoplasmic reticulum was isolated and sarcoplasmic reticulum activity was measured in vitro under the same conditions as the single-fiber experiments. Non-actomyosin ATPase in the single fibers was found to be small compared to maximally activated actomyosin ATPase but larger than the ATPase that could be attributed to sarcoplasmic reticulum activity.  相似文献   

9.
Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author’s knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin.  相似文献   

10.
Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author’s knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin.  相似文献   

11.
Both ADP production and tension have been measured in segments of chemically skinned fibers contracting at different Ca2+ concentrations. Full mechanical activation occurred between pCa 7.00 and pCa 6.50. The total ATPase was due to both actomyosin and non-actomyosin ATPase. Actomyosin ATPase was observed at pCa 7.09 without accompanying tension. The Ca2+ dependence of tension was steeper than actomyosin ATPase. This finding implies some rate constants of the mechanochemical cycle are Ca2+ dependent. Non-actomyosin ATPase was measured in fibers stretched beyond overlap of the thick and thin filaments. Sarcoplasmic reticulum was isolated and sarcoplasmic reticulum activity was measured in vitro under the same conditions as the single-fiber experiments. Non-actomyosin ATPase in the single fibers was found to be small compared to maximally activated actomyosin ATPase but larger than the ATPase that could be attributed to sarcoplasmic reticulum activity.  相似文献   

12.
The apical perijunctional actomyosin ring of epithelia is structurally associated with the tight junction. The functional association between the tight junction and the perijunctional actomyosin ring was initially described in studies using pharmacological agents that disrupt microfilaments. More recently, this interaction has been studied in physiological, pathophysiological, and molecular models of tight junction regulation. These studies have demonstrated the central role of actomyosin contraction in tight junction regulation. With the identification of novel tight junction proteins and characterization of their protein:protein interactions comes the promise of detailed understanding of the molecular interactions that mediate tight junction regulation.  相似文献   

13.
The actomyosin interaction plays a key role in a number of cellular functions. Single-molecule measurement techniques have been developed to study the mechanism of the actomyosin contractile system. However, the behavior of isolated single molecules does not always reflect that of molecules in a complex system such as a muscle fiber. Here, we developed a simple method for studying the kinetic parameters of the actomyosin interaction using small numbers of molecules. This approach does not require the specialized equipment needed for single-molecule measurements, and permits us to observe behavior that is more similar to that of a complex system. Using an in vitro motility assay, we examined the duration of continuous sliding of actin filaments on a sparsely distributed heavy meromyosin-coated surface. To estimate the association rate constant of the actomyosin motile system, we compared the distribution of experimentally obtained duration times with a computationally simulated distribution. We found that the association rate constant depends on the sliding velocity of the actin filaments. This technique may be used to reveal new aspects of the kinetics of various motor proteins in complex systems.  相似文献   

14.
Beginning in 1960 and continuing to this day, Guenther Gerisch's work on the social ameba Dictyostelium discoideum has helped to make it the model organism of choice for studies of cellular activities that depend upon the actomyosin cytoskeleton. Gerisch has brought insight and quantitative rigor to cell biology by developing novel assays and by applying advanced genetic, biochemical and microscopic techniques to topics as varied as cell-cell adhesion, chemotaxis, motility, endocytosis and cytokinesis.  相似文献   

15.
The mechanical strength of sarcomere structures of skeletal muscle was studied by rupturing single myofibrils of rabbit psoas muscle by submicromanipulation techniques. Microbeads coated with alpha-actinin were attached to the surface of myofibrils immobilized to coverslip. By use of either optical tweezers or atomic force microscope, the attached beads were captured and detached from the myofibrils. During the detachment of the beads, the actin filaments bound specifically to the beads were peeled off from the bulk structures of myofibrils, thus rupturing the peripheral components of the myofibrils bound to the actin filaments. By analyzing the ruptures thus produced in various myofibril preparations, it was found that the sarcomere structure of myofibrils is maintained by numerous molecular components having the mechanical strength sufficient to sustain the contractile force produced by the actomyosin system. The present techniques could be applied to study the mechanical strength of cellular organelles containing actin filaments as their component.  相似文献   

16.
The dramatic ingression of tissue sheets that accompanies many morphogenetic processes, most notably gastrulation, has been largely attributed to contractile circum-apical actomyosin 'purse-strings' in the infolding cells. Recent studies, however, including one in BMC Biology, expose mechanisms that rely less on actomyosin contractility of purse-string bundles and more on dynamics in the global cortical actomyosin network of the cells. These studies illustrate how punctuated actomyosin contractions and flow of these networks can remodel both epithelial and planarly organized mesenchymal sheets.  相似文献   

17.
Protein–ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein–ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein–ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein–ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings.  相似文献   

18.
A recording dual beam light-scattering photometer is described which permits kinetic studies involving changes in turbidity, and which is not, as are single photocell instruments, affected by the errors due to the attenuation of the scattered light within the turbid medium. With this method, a renewed study has been made of the physical changes occuring in actomyosin under the influence of ATP.  相似文献   

19.
We propose a muscle contraction model that is essentially a model of the motion of myosin motors as described by a Langevin equation. This model involves one-dimensional numerical calculations wherein the total force is the sum of a viscous force proportional to the myosin head velocity, a white Gaussian noise produced by random forces and other potential forces originating from the actomyosin structure and intra-molecular charges. We calculate the velocity of a single myosin on an actin filament to be 4.9–49 μm/s, depending on the viscosity between the actomyosin molecules. A myosin filament with a hundred myosin heads is used to simulate the contractions of a half-sarcomere within the skeletal muscle. The force response due to a quick release in the isometric contraction is simulated using a process wherein crossbridges are changed forcibly from one state to another. In contrast, the force response to a quick stretch is simulated using purely mechanical characteristics. We simulate the force–velocity relation and energy efficiency in the isotonic contraction and adenosine triphosphate consumption. The simulation results are in good agreement with the experimental results. We show that the Langevin equation for the actomyosin potentials can be modified statistically to become an existing muscle model that uses Maxwell elements.  相似文献   

20.
We recently refined the in vitro motility assay for studies of actomyosin function to achieve rectified myosin induced sliding of actin filaments. This paves the way, both for detailed functional studies of actomyosin and for nanotechnological applications. In the latter applications it would be desirable to use actin filaments for transportation of cargoes (e.g., enzymes) between different predetermined locations on a chip. We here describe how single quantum dot labelling of isolated actin filaments simultaneously provides handles for cargo attachment and bright and photostable fluorescence labels facilitating cargo detection and filament tracking. Labelling was achieved with preserved actomyosin function using streptavidin-coated CdSe quantum dots (Qdots). These nanocrystals have several unique physical properties and the present work describes their first use for functional studies of isolated proteins outside the cell. The results, in addition to the nanotechnology developments, open for new types of in vitro assays of isolated biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号