首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible relevance of changes in extracellular and/or intracellular pH to the insulinotropic action of L-arginine and L-homoarginine was investigated in rat pancreatic islets. A rise in extracellular pH from 7.0 to 7.4 and 7.8 augmented the secretory response to these cationic amino acids whilst failing to affect the uptake of L-arginine by islet cells and whilst decreasing the release of insulin evoked by D-glucose. Under these conditions, a qualified dissociation was also observed between secretory data and 45Ca net uptake. Moreover, at high extracellular pH, the homoarginine-induced increase in 86Rb outflow from prelabelled islets rapidly faded out, despite sustained stimulation of insulin release. The cationic amino acids failed to affect the intracellular pH of islet cells, whether in the absence or presence of D-glucose and whether at normal or abnormal extracellular pH. These findings argue against the view that the secretory response to L-arginine would be related to either a change in cytosolic pH or the accumulation of this positively charged amino acid in the beta-cell. Nevertheless, they suggest that the yet unidentified target for L-arginine and its non-metabolized analogue in islet cells displays pH-dependency with optimal responsiveness at alkaline pH.  相似文献   

2.
L-Arginine and L-ornithine, which stimulate amylase release, are taken up by rat parotid cells. L-Arginine is converted, in an NADPH-dependent manner and to a limited extent to L-citrulline in parotid cell homogenates, despite the absence of ornithine transcarbamylase activity. L-Arginine is largely converted to urea and L-ornithine. The generation of putrescine and polyamines from L-ornithine occurs at a very low rate, relative to the cell content in performed amines. The major fate of exogenous or arginine-derived ornithine consists in its conversion to L-glutamate, which is then further metabolized. These findings raise several hypotheses for the secretory response of the parotid cells to cationic amino acids, including their accumulation as positively charged molecules inside the cell and the generation of either NO, amines, substrates for a transglutaminase-catalyzed reaction, or ATP through oxidative catabolism. However, each of these hypotheses meets with objections, the modality for the stimulation of amylase release by cationic amino acids being eventually considered as an unsettled matter.  相似文献   

3.
Exogenous L-arginine and L-ornithine rapidly accumulate in rat pancreatic islets. L-Arginine is converted to L-ornithine and urea. Endogenous or exogenous L-ornithine generates di- and polyamines, the putrescine turnover being faster than that of spermidine and spermine. However, the major pathway for L-ornithine metabolism consists of its transamination to L-glutamaldehyde and further conversion to L-glutamate. The amines and L-glutamate derived from exogenous L-ornithine are incorporated into islet proteins at the intervention of transglutaminase and cycloheximide-sensitive biosynthetic processes, respectively. These findings suggest the hypothesis that the insulinotropic action of L-arginine and L-ornithine could somehow be related to the metabolism of these cationic amino acids in islet cells.  相似文献   

4.
In pancreatic islets removed from 48 h-fasted rats, as distinct from fed animals, the release of insulin evoked by D-glucose is more severely impaired than that evoked by 2-ketoisocaproate. This decreased secretory response to D-glucose contrasts with an unimpaired cationic response to the sugar in terms of the glucose-induced decrease in both 86Rb and 45Ca outflow from pre-labelled islets. Likewise, fasting only causes a modest decrease of the secondary rise in 45Ca outflow evoked by D-glucose in islets perifused at normal Ca2+ concentration. The latter decrease appears more marked, however, if the cationic response to glucose is expressed relative to that evoked by 2-ketoisocaproate in islets removed from rats in the same nutritional state. It is concluded that, in the process of nutrient-stimulated insulin release, neither the decrease in K+ conductance (inhibition of 86Rb outflow) nor the sequestration of Ca2+ by intracellular organelles and/or direct inhibition of Ca2+ outward transport (decrease in 45Ca outflow) represent the sole determinant(s) of the subsequent gating of Ca2+ channels (secondary rise in 45Ca efflux).  相似文献   

5.
Glucose-stimulated insulin release occurred at a lower rate in pancreatic islets removed from lactating than non-lactating rats. This defect was corrected in the presence of either gliclazide or a calcium-agonist. With both agents present, insulin release from islets of lactating rats was greater. When islets were prelabelled with 45calcium, gliclazide stimulated to the same extent 45Ca outflow in islets from lactating and non-lactating rats, respectively. However, when the islets were prelabelled with 45Ca in the presence of gliclazide, the administration of Ba2+ increased effluent radioactivity more markedly in islets from non-lactating than lactating rats. This suggests that lactation favours, in gliclazide-stimulated islets, the sequestration of 45Ca in non-labile subcellular pools. When D-glucose was used instead of Ba2+, the greater lability of 45Ca in islets from non-lactating animals was apparently masked by a lesser efficiency in the metabolism and cationic effects of D-glucose in the non-lactating rats. The calcium-ionophoretic effect of islet extracts was higher in lactating than non-lactating rats. These results support the view that a depletion of endogenous calcium stores accounts, in part at least, for the decreased insulin secretory responsiveness to D-glucose in lactation, since the latter apparently favours the function of those systems involved in either the entry of calcium into or its sequestration within the islet cells.  相似文献   

6.
The participation of glutathione reductase in the process of nutrient-stimulated insulin release was investigated in rat pancreatic islets exposed to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU caused a time-and dose-related, irreversible inhibition of glutathione reductase activity. This coincided with a fall in both GSH/GSSG ratio and the thiol content of the islets. Pretreatment of the islets with BCNU inhibited the oxidation of glucose and its stimulant action upon both 45Ca net uptake and insulin release. Although BCNU (up to 0.5 mM) failed to affect the oxidation of L-leucine and L-glutamine, it also caused a dose-related inhibition of insulin release evoked by the combination of these two amino acids. The latter inhibition was apparently not fully accounted for by the modest to negligible effects of BCNU upon 45Ca uptake, 45Ca efflux, 86Rb efflux and cyclic AMP production. Since BCNU failed to inhibit insulin release evoked by the association of Ba2+ and theophylline, these results support the view that glutathione reductase participates in the coupling of metabolic to secretory events in the process of nutrient-stimulated insulin release. However, the precise modality of such a participation, for example the control of intracellular Ca2+ distribution, remains to be elucidated.  相似文献   

7.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

8.
Arginine metabolism in rat enterocytes   总被引:2,自引:0,他引:2  
Rat enterocytes exposed to L-arginine in the absence of any other exogenous substrate were found to actively metabolize this cationic amino acid. L-Arginine was converted to L-citrulline either directly in a NADPH-sensitive manner thought to be coupled with the generation of NO, or indirectly through the sequence of reactions catalyzed by arginase and ornithine transcarbamylase. A large fraction of L-citrulline and L-ornithine generated from exogenous L-arginine was released in the incubation medium. The production of CO2 and (poly)amines from L-arginine occurred at rates 2 to 3 orders of magnitude lower than that characterizing the net uptake of the cationic amino acid, and this despite the fact that enterocytes were equipped to allow the interconversion of L-ornithine and L-glutamate. It is concluded that the oxidative catabolism of L-arginine in enterocytes is quantitatively negligible relative to its conversion to L-citrulline and L-ornithine.  相似文献   

9.
1. 3-Phenylpyruvate caused a dose-related stimulation of insulin release from rat pancreatic islets deprived of exogenous nutrient or incubated in the presence of 5.6 or 8.3 mM-D-glucose. 2. 3-Phenylpyruvate inhibited insulin release evoked by high concentrations of D-glucose (16.7 or 27.8 mM) or 4-methyl-2-oxopentanoate (10.0 mM). This inhibitory effect appeared to be attributable to impairment of 2-oxo-acid transport into the mitochondria, with resulting inhibition of D-glucose, pyruvate or 4-methyl-2-oxopentanoate oxidation. 3. 3-Phenylpyruvate failed to affect the oxidation of, and secretory response to, L-leucine, and did not augment insulin release evoked by a non-metabolized analogue of the latter amino acid. 4. L-Glutamine augmented 3-phenylpyruvate-induced insulin release. The release of insulin evoked by the combination of 3-phenylpyruvate and L-glutamine represented a sustained phenomenon, abolished in the absence of extracellular Ca2+ or the presence of menadione and potentiated by theophylline. 5. Whether in the presence or in the absence of L-glutamine, the secretory response to 3-phenylpyruvate coincided with an increase in O2 uptake, a decrease in K+ conductance, a stimulation of both Ca2+ inflow and 45Ca2+ net uptake and an increase in cyclic AMP content. 6. It is concluded that the release of insulin induced by 3-phenylpyruvate displays features classically encountered when the B-cell is stimulated by nutrient secretagogues, and is indeed attributable to an increase in nutrient catabolism.  相似文献   

10.
Poorly metabolized hexoses, such as 3-O-methyl-D-glucose, 2-deoxy-D-glucose and D-galactose failed to reproduce the inhibition of 86Rb outflow, the early inhibition and secondary rise in 45Ca efflux and the stimulation of insulin release evoked by D-glucose in perifused rat islets. Insulin release induced by either D-glucose or 2-ketoisocaproate was also unaffected by 3-O-methyl-D-glucose. It is concluded that hexose transport in islet cells does not represent in itself a significant determinant of the cationic and secretory response to D-glucose.  相似文献   

11.
D-glucose stimulates insulin release from islets exposed to both diazoxide, to activate ATP-responsive K+ channels, and a high concentration of K+, to cause depolarization of the B-cell plasma membrane. Under these conditions, the insulinotropic action of D-glucose is claimed to occur despite unaltered cytosolic Ca2+ concentration, but no information is so far available on the changes in Ca2+ fluxes possibly caused by the hexose. In the present experiments, we investigated the effect of D-glucose upon 45Ca efflux from islets exposed to both diazoxide and high K+ concentrations. In the presence of diazoxide and at normal extracellular Ca2+ concentration, D-glucose (16.7 mmol/l) inhibited insulin release at 5 mmol/l K+, but stimulated insulin release of 90 mmol/l K+. In both cases, the hexose inhibited 45Ca outflow. In the presence of diazoxide, but absence of Ca2+, D-glucose (8.3 to 25.0 mmol/l) first caused a rapid decrease in insulin output followed by a progressive increase in secretory rate. This phenomenon was observed both at 5 mmol/l or higher concentrations (30, 60 and 90 mmol/l) of extracellular K+. It coincided with a monophasic decrease in 45Ca efflux and either a transient (at 5 mmol/l K+) or sustained (at 90 mmol/l K+) decrease in overall cytosolic Ca2+ concentration. The decrease in 45Ca efflux could be due to inhibition of Na(+)-Ca2+ countertransport with resulting localized Ca2+ accumulation in the cell web of insulin-producing cells. A comparable process may be involved in the secretory response to D-glucose in islets exposed to diazoxide and a high concentration of K+ in the presence of extracellular Ca2+.  相似文献   

12.
Endogenous ATP is thought to play a key regulatory role in nutrient-stimulated insulin release. The present study deals with the effect of exogenous ATP and its stable analog alpha, beta-methylene ATP upon pancreatic islet function. Both alpha, beta-methylene ATP (5.0 microM to 0.2 mM) and ATP (0.3-3.0 mM) caused a rapid and concentration-related increase in insulin output by rat islets incubated or perfused at an intermediate concentration of D-glucose (8.3 mM). The effect of the ATP analog faded out at both lower and higher D-glucose concentrations. In the presence of 8.3 mM D-glucose, ATP also increased both 86Rb and 45Ca outflow from prelabelled islets. The cationic response to ATP persisted in the absence of extracellular Ca2+ and, hence, was reminiscent of that evoked by cholinergic agents. Like carbamylcholine, ATP caused a dose-related increase in the production of [3H]inositol phosphates from prelabelled islets or tumoral islet cells (RINm5F line). The latter effect was duplicated by alpha, beta-methylene ATP and unaffected by atropine. It is speculated that ATP, liberated together with insulin at the exocytotic site, might participate in a positive feedback control of insulin release.  相似文献   

13.
The glucose effect on insulin release in a Ca(2+)-deficient medium was analyzed in perifusion experiments with aggregates of cells prepared by dispersal of the beta-cell-rich pancreatic islets of ob/ob-mice. Hyperosmolar additions of 20 mM D-glucose or its poorly metabolized transport analogue 3-0-methyl-D-glucose resulted in 50% suppression of the secretory rate. However, after isosmolar additions of the sugars, replacing non-penetrating sucrose, there was a stimulation of insulin release. Whereas D-glucose was less effective than 3-O-methyl-D-glucose in stimulating insulin release after isosmolar addition, the opposite was found for the enhanced secretory response obtained when the sugars were excluded from the perifusion medium. The studies indicate that D-glucose has regulatory actions on insulin release also in the virtual absence of extracellular Ca2+. This effect is not only due to osmolar influences but involves also direct suppression of the secretory activity probably mediated by the metabolism of the sugar.  相似文献   

14.
Available information on the fate and insulinotropic action of L-alanine in isolated pancreatic islets is restricted to data collected in obese hyperglycemic mice. Recent data, however, collected mostly in tumoral islet cells of either the RINm5F line or BRIN-BD11 line, have drawn attention to the possible role of Na(+) co-transport in the insulinotropic action of L-alanine. In the present study conducted in islets prepared from normal adult rats, L-alanine was found (i) to inhibit pyruvate kinase in islet homogenates, (ii) not to affect the oxidation of endogenous fatty acids in islets prelabelled with [U-14C]palmitate, (iii) to stimulate 45Ca uptake in islets deprived of any other exogenous nutrient, and (iv) to augment insulin release evoked by either 2-ketoisocaproate or L-leucine, whilst failing to significantly affect glucose-induced insulin secretion. The oxidation of L-[U-14C]alanine was unaffected by D-glucose, but inhibited by L-leucine. Inversely, L-alanine decreased the oxidation of D-[U-14C]glucose, but failed to affect L-[U-14C]leucine oxidation. It is concluded that the occurrence of a positive insulinotropic action of L-alanine is restricted to selected experimental conditions, the secretory data being compatible with the view that stimulation of insulin secretion by the tested nutrient(s) reflects, as a rule, their capacity to augment ATP generation in the islet B cells. However, the possible role of Na(+) co-transport in the secretory response to L-alanine cannot be ignored.  相似文献   

15.
1. Menadione (2-methyl-1,4-naphthoquinone) inhibits insulin release evoked in the rat endocrine pancreas by glucose or glyceraldehyde, but fails to affect the secretory response to Ca2+, Ba2+, theophylline or gliclazide. The inhibitory effect of menadione upon glucose-induced insulin release is a dose-related, rapid and reversible phenomenon, menadione and glucose acting apparently as competitive antagonists. Menadione affects both the early and late phase of the secretory response to glucose. Menadione also antagonizes in a dose-related fashion the ability of glucose to reduce 86Rb efflux, to provoke 86Rb accumulation, to cause biphasic changes in 45 Ca efflux and to stimulate 45 Ca net uptake in pancreatic islets. 2. It is concluded that menadione impairs the insulinotropic action of glucose and other nutrients by impeding the remodelling of cationic fluxes normally provoked by these secretagogues in islet cells. Menadione, however, does not affect the capacity of divalent cations to activate the effector system which controls the release of secretory granules. Menadione may therefore represent a valuable tool to elucidate the mechanism by which glucose normally modifies the movement of cations in the pancreatic B-cell.  相似文献   

16.
The pancreatic B-cell may represent a fuel-sensor organ, the release of insulin evoked by nutrient secretagogues being attributable to an increased oxidation of exogenous and/or endogenous substrates. The participation of endogenous fatty acids in the secretory response of isolated rat pancreatic islets was investigated. Methyl palmoxirate (McN-3716, 0.1 mM), an inhibitor of long-chain-fatty-acid oxidation, suppressed the oxidation of exogenous [U-14C]palmitate and inhibited 14CO2 output from islets prelabelled with [U-14C]palmitate. Methyl palmoxirate failed to affect the oxidation of exogenous D-[U-14C]glucose or L-[U-14C]glutamine, the production of NH4+ and the output of 14CO2 from islets prelabelled with L-[U-14C]glutamine. In the absence of exogenous nutrient and after a lag period of about 60 min, methyl palmoxirate decreased O2 uptake to 69% of the control value. Methyl palmoxirate inhibited insulin release evoked by D-glucose, D-glyceraldehyde, 2-oxoisohexanoate, L-leucine, 2-aminobicyclo[2.2.1]heptane-2-carboxylate or 3-phenylpyruvate. However, methyl palmoxirate failed to affect insulin release when the oxidation of endogenous fatty acids was already suppressed, e.g. in the presence of pyruvate or L-glutamine. These findings support the view that insulin release evoked by nutrient secretagogues tightly depends on the overall rate of nutrient oxidation, including that of endogenous fatty acids.  相似文献   

17.
Considering the insufficient supply of long-chain polyunsaturated omega-3 fatty acids often prevailing in Western populations, this report deals mainly with alterations of Ca(2+) fluxes and Ca(2+)-dependent insulin secretory events in isolated pancreatic islets from omega-3-depleted rats. In terms of (45)Ca(2+) handling, the islets from omega-3-depleted rats, compared with those from normal animals, displayed an unaltered responsiveness to an increase in extracellular K(+) concentration, a lower inflow rate and lower fractional outflow rate of the divalent cation, and higher (45)Ca(2+)-labeled cellular pool(s) at isotopic equilibrium. The latter anomaly was corrected 120 min after intravenous injection of a novel medium-chain triglyceride-fish oil (MCT:FO) emulsion, distinct from a control omega-3-poor MCT-olive oil (MCT:OO) emulsion. At 8.3 mM D-glucose, insulin release was higher in islets from omega-3-depleted rats vs. control animals, coinciding with a higher cytosolic Ca(2+) concentration. The relative magnitude of the increase in insulin output attributable to a rise in D-glucose as well as extracellular Ca(2+) or K(+) concentration, to the absence vs. presence of verapamil and to the presence vs. absence of extracellular Ca(2+), theophylline, phorbol 12-myristate 13-acetate, or Ba(2+), was always more pronounced in islets from omega-3-depleted rats injected with the MCT:OO compared with the MCT:FO emulsion. A comparable situation prevailed when comparing islets from noninjected omega-3-depleted and normal rats. In light of these and previous findings, we propose that an impairment of Na(+),K(+)-ATPase activity plays a major, although not an exclusive, role in the perturbation of Ca(2+) fluxes and Ca(2+)-dependent secretory events in the islets from omega-3-depleted rats.  相似文献   

18.
B A Wolf  S M Pasquale  J Turk 《Biochemistry》1991,30(26):6372-6379
Free fatty acids in isolated pancreatic islets have been quantified by gas chromatography-mass spectrometry after stimulation with insulin secretagogues. The fuel secretagogue D-glucose has been found to induce little change in islet palmitate levels but does induce the accumulation of sufficient unesterified arachidonate by mass to achieve an increment in cellular levels of 38-75 microM. Little of this free arachidonate is released into the perifusion medium, and most remains associated with the islets. Glucose-induced hydrolysis of arachidonate from islet cell phospholipids is reflected by release of the arachidonate metabolite prostaglandin E2 (PGE2) from perifused islets. Both the depolarizing insulin secretagogue tolbutamide (which is thought to act by inducing closure of beta-cell ATP-sensitive K+ channels and the influx of extracellular Ca2+ through voltage-dependent channels) and the calcium ionophore A23187 have also been found to induce free arachidonate accumulation within and PGE2 release from islets. Surprisingly, a major fraction of glucose-induced eicosanoid release was found not to require Ca2+ influx and occurred even in Ca(2+)-free medium, in the presence of the Ca(2+)-chelating agent EGTA, and in the presence of the Ca2+ channel blockers verapamil and nifedipine. Exogenous arachidonic acid was found to amplify the insulin secretory response of perifused islets to submaximally depolarizing concentrations of KCl, and the maximally effective concentration of arachidonate was 30-40 microM. These observations suggest that glucose-induced phospholipid hydrolysis and free arachidonate accumulation in pancreatic islets are not simply epiphenomena associated with Ca2+ influx and that arachidonate accumulation may play a role in the signaling process which leads to insulin secretion.  相似文献   

19.
Cationic amino acids were recently found to stimulate amylase release from rat parotid cells. The possible relevance of their oxidative catabolism to such a secretory stimulation was investigated. D-Glucose, which was efficiently metabolized in parotid cells and which augmented O2 uptake above basal value, failed to affect basal or stimulated amylase release. L-Arginine, L-lysine and L-histidine failed to stimulate the oxidation of either exogenous D-[6-14C]glucose or endogenous nutrients in cells pre-labelled with [U-14C]palmitate or L-[U-14C]glutamine. The oxidation of L-[U-14C]arginine, L-[U-14C]ornithine, L-[U-14C]lysine and L-[U-14C]histidine, all tested at a 10 mM concentration, was much lower than that of D-[U-14C]glucose (5.6 mM). These findings argue against the view that the stimulation of amylase release by cationic amino acids would be related to their role as a source of energy in the parotid cells.  相似文献   

20.
Above a threshold value in excess of 5.6 mM, D-glucose increases the amount of cyclic AMP measured by radioimmunoassay in pancreatic rat islets and their surrounding incubation medium. As judged from the cyclic AMP content of islets exposed to isobutylmethylxanthine (1.0 mM), the glucose-induced increment in the rate of cyclic AMP generation represents a rapid and sustained phenomenon. The stimulant action of glucose on cyclic AMP accumulation is mimicked by L-leucine, and L-glutamine, these amino acids acting synergistically of one another. Trifluoperazine slightly decreases but fails to abolish the effect of glucose. In the absence of extracellular Ca2+, however, the cyclic AMP response to D-glucose, L-leucine and/or L-glutamine is severely impaired. These findings are compatible with the view that an increase in the generation rate of cyclic AMP participates in the process of nutrient-stimulated insulin release. This increase could be secondary to the nutrient-induced accumulation of Ca2+ in the islet cells leading to activation of adenylate cyclase by calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号