首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
J. H. M. Bex 《Planta》1972,103(1):11-17
Summary Effects of abscisic acid (ABA) on the polymerase activity have been investigated. The specific activity of the RNA polymerase enzyme decreased when coleoptiles were preincubated for 6 hours or longer in 3.8×10-5M ABA. Inhibition of RNA synthesis could however already be detected after 3 hours ABA treatment.Inclusion of (RS) cis-trans ABA in the grinding medium decreased the polymerase activity; inclusion of (RS) trans-trans ABA in the medium only had a small effect on the activity. Addition of (RS) cis-trans and (RS) trans-trans ABA to the RNA polymerase assay system also gave a slight inhibition of activity.The strong inhibition when (RS) cis-trans ABA was included in the grinding medium indicates that the hormone interacts with an activator molecule which is not present in the partly purified RNA polymerase solution.It is suggested that ABA may have more than one mode of action.  相似文献   

3.
We describe a method for correlating polymerase activity with a particular polypeptide band in an SDS-polyacrylamide gel which does not require renaturation of the SDS-denatured enzyme. The method involves the following steps: (i) transfer of proteins from an SDS-polyacrylamide gel onto nitrocellulose; (ii) incubation with excess antiserum raised against a partially purified polymerase preparation to link one Fab site of an antibody molecule to the denatured enzyme on the nitrocellulose; (iii) binding of native polymerase to the other Fab site of the antibody molecule in the immune complex to generate a specific polymerase 'sandwich'; (iv) assaying of the nitrocellulose filter for antibody-linked native polymerase activity using an appropriate template and a radioactive substrate followed by treatment with trichloroacetic acid to precipitate in situ the radioactive product. The essential feature of this method is that the use of both non-specific anti-polymerase serum and a partially purified enzyme preparation is sufficient to allow identification of a specific protein following SDS-polyacrylamide gel electrophoresis. This antibody-linked polymerase assay has been developed to identify a 130,000-dalton RNA-dependent RNA polymerase from cowpea leaves. Possible applications of this type of assay as a tool for identifying a wide variety of proteins are discussed.  相似文献   

4.
In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation.  相似文献   

5.
1. The RNA-dependent RNA polymerase from Halobacterium cutirubrum was purified to electrophoretic homogeneity. 2. It requires a single-stranded molecule of RNA or polyribonucleotide as template. 3. Nearest-neighbour analyses of the products formed on random poly(A,U) or alternating poly(A-U) templates and base analysis of the product of synthesis directed by wheat-germ RNA prove that the template is copied accurately. 4. The enzyme initiates new chains with purine ribonucleoside triphosphates. 5. Sucrose-density-gradient analysis of the product indicates that it has a size distribution similar to that of the template. 6. Preliminary amino acid analysis of the RNA-dependent polymerase shows that it contains much less serine than either of the subunits of H. cutirubrum DNA-dependent RNA polymerase. 7. The RNA-dependent enzyme is unable to substitute for either subunit of the DNA-dependent polymerase, and both the latter are devoid of RNA-dependent activity.  相似文献   

6.
Two deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerases (I, II) have been solubilized from isolated Saccharomyces cerevisiae nuclei. The enzymes can be separated by chromatography on O-diethylaminoethyl Sephadex. Both enzymes are active with high-molecular-weight nuclear yeast DNA, although RNA polymerase I has a higher affinity for polydeoxy-adenylic-thymidylic acid and RNA polymerase II for denatured DNA. RNA polymerase I is active only with manganese. alpha-Amanitin inhibits only the activity of RNA polymerase II.  相似文献   

7.
8.
9.
Reticuloendotheliosis viruses (REV) contain an endogenous RNA-directed DNA polymerase activity. The endogenous DNA polymerase activity can be elicited in purified preparations of REV by treatment with nonionic detergents. The enzyme activity has a strong preference for manganous ions. Therefore, appreciable endogenous DNA polymerase activity can be demonstrated only if the reaction mixture contains appropriate concentrations of manganous ions. Enzyme activity can be inhibited by pretreatment with RNase or deletion of one or more deoxyribonucleoside triphosphates from the reaction mixture. In contrast, actinomycin D has little effect in initial DNA synthesis. The results from both velocity and equilibrium centrifugation indicate that the nascent chains of product DNA are associated with 60S viral RNA. The DNA product of the endogenous DNA polymerase reaction is hybridizable to REV RNA, but not to avian leukosis virus RNA.  相似文献   

10.
RNA-dependent RNA polymerases contain a highly conserved region of amino acids with a core segment composed of the amino acids YGDD which have been hypothesized to be at or near the catalytic active site of the molecule. Six mutations in this conserved YGDD region of the poliovirus RNA-dependent RNA polymerase were made by using oligonucleotide site-directed DNA mutagenesis of the poliovirus cDNA to substitute A, C, M, P, S, or V for the amino acid G. The mutant polymerase genes were expressed in Escherichia coli, and the purified RNA polymerases were tested for in vitro enzyme activity. Two of the mutant RNA polymerases (those in which the glycine residue was replaced with alanine or serine) exhibited in vitro enzymatic activity ranging from 5 to 20% of wild-type activity, while the remaining mutant RNA polymerases were inactive. Alterations in the in vitro reaction conditions by modification of temperature, metal ion concentration, or pH resulted in no significant differences in the activities of the mutant RNA polymerases relative to that of the wild-type enzyme. An antipeptide antibody directed against the wild-type core amino acid segment containing the YGDD region of the poliovirus polymerase reacted with the wild-type recombinant RNA polymerase and to a limited extent with the two enzymatically active mutant polymerases; the antipeptide antibody did not react with the mutant RNA polymerases which did not have in vitro enzyme activity. These results are discussed in the context of secondary-structure predictions for the core segment containing the conserved YGDD amino acids in the poliovirus RNA polymerase.  相似文献   

11.
A template-dependent polyuridylic acid [poly(U)] polymerase has been isolated from BHK cells infected with foot-and-mouth disease virus (FMDV). Enzyme activity in a 20,000 x g supernatant of a cytoplasmic extract was concentrated by precipitation with 30 to 50% saturated ammonium sulfate. The poly(U) polymerase was freed of membranes by sodium dodecyl sulfate and 1,1,2-trichlorotrifluoroethane extraction, and RNA was removed by precipitation with 2 M LiCl. The solubilized poly(U) polymerase required polyadenylic acid as template complexed to an oligouridylic acid primer and Mg2+ for activity, but was inhibited by Mn2+. Antisera from animals infected with FMDV had previously been shown to inhibit the activity of FMDV RNA replicase complexed to the endogenous RNA template. The same antisera also inhibited the activity of poly(U) polymerase. Antisera depleted of antibody by absorption with the virus infection-associated antigen of FMDV no longer inhibited replicase and polymerase activities. The evidence suggests that FMDV RNA replicase, poly(U) polymerase, and the virus infection-associated antigen share a common protein.  相似文献   

12.
13.
What was the first living molecule – RNA or protein?This question embodies the major disagreement instudies on the origin of life. The fact that incontemporary cells RNA polymerase is a protein andpeptidyl transferase consists of RNA suggests theexistence of a mutual catalytic dependence betweenthese two kinds of biopolymers. I suggest that thisdependence is a `frozen accident', a remnant from thefirst living system. This system is proposed to be acombination of an RNA molecule capable of catalyzingamino acid polymerization and the resulting proteinfunctioning as an RNA-dependent RNA polymerase. Thespecificity of the protein synthesis is thought to beachieved by the composition of the surrounding mediumand the specificity of the RNA synthesis – by Watson– Crick base pairing. Despite its apparent simplicity,the system possesses a great potential to evolve intoa primitive ribosome and further to life, as it isseen today. This model provides a possible explanationfor the origin of the interaction between nucleicacids and protein. Based on the suggested system, Ipropose a new definition of life as a system ofnucleic acid and protein polymerases with a constantsupply of monomers, energy and protection.  相似文献   

14.
A soluble RNA-dependent RNA polymerase was isolated from poliovirus-infected HeLa cells and was shown to copy poliovirus RNA in vitro. The enzyme was purified from a 200,000-X-g supernatant of a cytoplasmic extract of infected cells. The activity of the enzyme was measured throughout the purification by using a polyadenylic acid template and oligouridylic acid primer. The enzyme was partially purified by ammonium sulfate precipitation, glycerol gradient centrifugation, and phosphocellulose chromatography. The polymerase precipitated in a 35% saturated solution of ammonium sulfate, sedimented at about 7S on a glycerol gradient, and eluted from phosphocellulose with 0.15 M KC1. The polymerase was purified about 40-fold and was shown to be totally dependent on exogenous RNA for activity and relatively free of contaminating nuclease. The partially purified polymerase was able to use purified polio virion RNA as well as a template. Under the reaction conditions used, the polymerase required an oligouridylic acid primer and all four ribonucleside triphosphates for activity. The optimum ratio of oligouridylic acid molecules to poliovirus RNA molecules for priming activity was about 16:1. A nearest-neighbor analysis of the in vitro RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA rendered it resistant to RNase digestion, thus suggesting that the product RNA was complementary to the virion RNA template.  相似文献   

15.
Heating the 60 to 70S ribonucleic acid (RNA) of Rous sarcoma virus (RSV) destroys both its subunit structure and its high template activity for RSV deoxyribonucleic acid (DNA) polymerase. In comparative analyses, it was found that the template activity of the RNA has a thermal transition of 70 C, whereas the 60 to 70S structure dissociates into 30 to 40S and several distinct small subunits with a T(m) of 55 C. Analysis by velocity sedimentation and isopycnic centrifugation of the primary DNA product obtained by incubation of 60 to 70S RSV RNA with RSV DNA polymerase indicated that most, but perhaps not all, DNA was linked to small (<10S) RSV RNA primer. Sixty percent of the high template activity of 60 to 70S RSV RNA lost after heat dissociation could be recovered by incubation of the total RNA under annealing conditions. The template activity of purified 30 to 40S subunits isolated from 60 to 70S RSV RNA was not enhanced significantly by annealing. However, in the presence of small (<10S) subunits also isolated from 60 to 70S RNA, the template activity of 30 to 40S RNA subunits was increased to the same level as that of reannealed total 60 to 70S RNA. It was concluded that neither the 30 to 40S subunits nor most of the 4S subunits of 60 to 70S RSV RNA contribute much as primers to the template activity of 60 to 70S RSV RNA. The predominant primer molecule appears to be a minor component of the <10S subunit fraction of 60 to 70S RSV RNA. Its electrophoretic mobility is similar to, and its dissociation temperature from 60 to 70S RSV RNA is higher than that of the bulk of 60 to 70S RSV RNA-associated 4S RNA. The role of primers in DNA synthesis by RSV DNA polymerase is discussed.  相似文献   

16.
The soluble phase of the cytoplasm of human rhinovirus type 2-infected cells contains an enzymatic activity able to copy rhinovirion RNA without an added primer. This RNA-dependent RNA polymerase (replicase) makes a specific copy of the added rhinovirion RNA, as shown by hybridization of the product to its template RNA but not to other RNAs. The same replicase preparation also contains a virus-specific polyuridylic acid [poly(U)] polymerase activity which is dependent on added polyadenylic acid-oligouridylic acid template-primer. Both activities purify together until a step at which poly(U) polymerase but no replicase activity is recovered. Addition of a purified HeLa cell protein (host factor) to this poly(U) polymerase completely reconstitutes rhinovirus replicase activity. Host factor activity can be supplied by adding oligouridylic acid, suggesting that the host cell protein acts at the initiation step of rhinovirus RNA replication. A virus-specific 64,000-dalton protein purifies with both poly(U) polymerase and replicase activities.  相似文献   

17.
A number of methods for the preparation of chick oviduct nuclei have been compared. Nuclei have been isolated in hypertonic sucrose and citric acid and the product has been characterized with respect to cleanliness, ultrastructure, RNA polymerase activity, RNA integrity, and chromatin composition. The study demonstrates that the choice of oviduct nuclear isolation procedure will depend markedly on the purpose for which the nuclei are required. Thus, nuclei prepared entirely in high-molarity sucrose retain the highest levels of RNA polymerase. Those prepared rapidly in the presence of citric acid retain nuclear RNA in an essentially undegraded state. Finally, a bulk preparation is described which, because of its adaptability and high yield of morphologically intact nuclei using large amounts of tissue, is ideal for use in preparing chromatin. Conditions are described by which isolated nuclei can be stored for up to 6 months and retain their morphology, chemical characteristics, and RNA polymerase activity.  相似文献   

18.
An RNA polymerase activity that synthesizes a U-rich RNA hydrogen bonded to a large viral RNA molecule was found in the cores of virions of avian reticuloendotheliosis viruses (REV). The RNA polymerase activity was separable from the DNA polymerase activity of REV virions. The 5'-terminus of the newly synthesized RNA was A. In addition, a tRNA nucleotidyl transferase activity, which added -CpCpA ends to tRNA, appears to be present in the REV virions.  相似文献   

19.
1. The Widnell & Tata (1966) assay method for Mg(2+)-activated DNA-dependent RNA polymerase was used for initial-velocity determinations of rat liver nuclear RNA polymerase. One unit (U) of RNA polymerase was defined as that amount of enzyme required for 1 mmol of [(3)H]GMP incorporation/min at 37 degrees C. 2. Colony fed rats were found to have a mean RNA polymerase activity of 65.9muU/mg of DNA and 18h-starved rats had a mean activity of 53.2muU/mg of DNA. Longer periods of starvation did not significantly decrease RNA polymerase activity further. 3. Rats that had been starved for 18h were used for all feeding experiments. Complete and tryptophan-deficient amino acid mixtures were given by stomach tube and the animals were killed 15-120min later. The response of RNA polymerase to the feeding with the complete amino acid mixture was rapid and almost linear over the first hour of feeding, resulting in a doubling of activity. The activity was still elevated above the starvation value at 120min after feeding. The tryptophan-deficient amino acid mixture produced a much less vigorous response about 45min after the feeding, and the activity had returned to the starvation value by 120min after the feeding. 4. The response of RNA polymerase to the feeding with the complete amino acid mixture was shown to occur within a period of less than 5min to about 10min after the feeding. 5. Pretreatment of the animals with puromycin or cycloheximide was found to abolish the 15min RNA polymerase response to the feeding with the complete amino acid mixture, but the activity of the controls was unaffected. 6. The characteristics of the RNA polymerase from 18h-starved animals and animals fed with the complete or incomplete amino acid mixtures for 1h were examined. The effects of Mg(2+) ions, pH, actinomycin D and nucleoside triphosphate omissions were determined. The [Mg(2+)]- and pH-activity profiles of the RNA polymerase from the animal fed with the complete mixture appeared to differ from those of the enzyme from the other groups, but this difference is probably not significant. 7. [5-(3)H]Orotic acid incorporation by rat liver nuclei in vivo was shown to be affected by the amino acid mixtures in a similar manner to the RNA polymerase. 8. The tryptophan concentrations of plasma and liver were determined up to 120 min after feeding with the amino acid mixtures. Feeding with the complete mixture produced a rapid increase in free tryptophan concentrations in both plasma and liver, but feeding with the incomplete mixture did not alter the plasma concentration. The liver tryptophan concentration increased at about 45min after feeding with the tryptophan-deficient diet. 9. There was a good correlation between the liver tryptophan concentration and RNA polymerase activity in all groups of animals. 10. It was concluded that the rat liver nucleus responded to an increase in amino acid supply by increased synthesis of RNA as a result of synthesis of RNA polymerase de novo. The correlation of tryptophan concentration and RNA polymerase activity appears to reflect the general amino acid concentration required to support hepatic protein synthesis and to produce new RNA polymerase. This new polymerase appears to differ from the basal RNA polymerase by its rapid synthesis and destruction, which may be a means of regulating RNA synthesis by the amino acid concentration in the liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号