首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

2.
In heart failure (HF), there is a reduced baroreflex sensitivity at rest, and during dynamic exercise there is enhanced muscle metaboreflex activation (MRA). However, how the arterial baroreflex modulates HR during exercise is unknown. We tested the hypothesis that spontaneous baroreflex sensitivity (SBRS) is attenuated during exercise in HF and that MRA further depresses SBRS. In seven conscious dogs we measured heart rate (HR), cardiac output, and left ventricular systolic pressure at rest and during mild and moderate dynamic exercise, before and during MRA (via imposed reductions of hindlimb blood flow), and before and after induction of HF (by rapid ventricular pacing). SBRS was assessed by the sequences method. In control, SBRS was reduced from rest with a progressive resetting of the baroreflex stimulus-response relationship in proportion to exercise intensity and magnitude of MRA. In HF, SBRS was significantly depressed in all settings; however, the changes with exercise and MRA occurred with a pattern similar to the control state. As in control, the baroreflex stimulus-response relationship showed an intensity- and muscle metaboreflex (MMR)-dependent rightward and upward shift. The results of this study indicate that HF induces an impairment in baroreflex control of HR at rest and during exercise, although the effects of exercise and MRA on SBRS occur with a similar pattern as in control, indicating the persistence of some vagal activity.  相似文献   

3.
4.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.  相似文献   

5.
6.
Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P < 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P < 0.05), but they were not related to the HR responses during LBNP or mental stress (P > 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.  相似文献   

7.
Spectral analysis of heart rate variability (HRV) might provide an index of relative sympathetic (SNS) and parasympathetic nervous system (PNS) activity during exercise. Eight subjects completed six 17-min submaximal exercise tests and one resting measurement in the upright sitting position. During submaximal tests, work rate (WR) was increased for the initial 3 min in a ramp fashion until it reached constant WRs of 20 W, or 30, 60, 90, 100, and 110% of the predetermined ventilatory threshold (Tvent). Ventilatory profile and alveolar gas exchange were monitored breath by breath, and beat-to-beat HRV was measured as R-R intervals of an electrocardiogram. Spectral analysis was applied to the HRV from 7 to 17 min. Low-frequency (0-0.15 Hz) and high-frequency (0.15-1.0 Hz) areas under power spectra (LO and HI, respectively) were calculated. The indicator of PNS activity (HI) decreased dramatically (P less than 0.05) when the subjects exercised compared with rest and continued to decrease until the intensity reached 60% Tvent. The indicator of SNS activity (LO/HI) remained unchanged up to 100% Tvent, whereas it increased abruptly (P less than 0.05) at 110% Tvent. The results suggested that (cardiac) PNS activity decreased progressively from rest to a WR equivalent to 60% Tvent, and SNS activity increased only when exercise intensity exceeded Tvent.  相似文献   

8.
Norepinephrine is frequently elevated in postural tachycardia syndrome (POTS), a syndrome of heterogeneous etiology characterized by a >30 beats/min increase in heart rate with standing. Norepinephrine is synthesized from dopamine by dopamine-beta-hydroxylase (DBH). The results of a preliminary study suggested that the T allele frequency of the DBH -1021C-->T polymorphism is elevated in POTS. This allele correlates with low DBH activity and might predict reduced serum DBH activity in patients with POTS. To test the hypothesis that low DBH activity and the underlying -1021C-->T polymorphism are associated with increased susceptibility to POTS, we measured serum DBH activity in POTS and determined its relationship to the DBH genotype and plasma norepinephrine. Serum DBH was similar for 83 normal volunteers and 42 patients with POTS: median (range) = 22.5 (0.5-94.2) and 19.6 (0.1-68.8) nmol.min(-1).ml(-1), respectively (P = 0.282). The genotype frequencies for 254 control and 157 POTS patients were not different between groups ( approximately 63% CC genotype and approximately 5% TT genotype, P = 0.319). The T allele associated with lower serum DBH in both groups [control serum DBH = 15.7 (SD 12.3) and 35.1 nmol.min(-1).ml(-1) (SD 18.6) for T carriers and noncarriers, respectively; POTS serum DBH = 8.2 (SD 5.6) and 28.5 nmol.min(-1).ml(-1) (SD 14.7) for T carriers and noncarriers, respectively]. High DBH in POTS was linked to elevated plasma levels of norepinephrine. Although DBH activity and genotype are unlikely to be primary determinants of susceptibility to POTS, differences in DBH activity in POTS may reflect differences in the level of sympathetic activation.  相似文献   

9.
This study investigated control of heart rate (HR) and mean arterial pressure (MAP) at rest and during electrical stimulation (ES) leg cycling exercise (LCE) in paraplegics (Para). Seven men with complete spinal lesions (T(5)-T(11)) and six able-bodied (AB) men participated in this study. Beat-to-beat changes in HR and MAP were recorded during carotid sinus perturbation. Carotid baroreflex function curves were derived at rest and during ES-LCE for Para and during voluntary cycling (Vol) for AB. From rest to ES-LCE, oxygen uptake (VO(2)) increased (by 0.43 l/min) and HR rose (by 11 beats/min), yet MAP remained unchanged. In AB, Vol increased VO(2) (by 0.53 l/min), HR (by 22 beats/min), and MAP (by 8 mmHg). ES-LCE did not alter the carotid sinus pressure (CSP)-MAP relationship, but it displaced the CSP-HR relationship upward relative to rest. No rightward shift was observed during ES-LCE. Vol by AB produced an upward and rightward displacement of the CSP-MAP and CSP-HR relationships relative to rest. These findings suggested that the carotid sinus baroreflex was not reset during ES-LCE in Para.  相似文献   

10.
11.
Previous investigations have allowed for stratification of patients with postural tachycardia syndrome (POTS) on the basis of peripheral blood flow. One such subset, comprising "normal-flow POTS" patients, is characterized by normal peripheral resistance and blood volume in the supine position but thoracic hypovolemia and splanchnic blood pooling in the upright position. We studied 32 consecutive 14- to 22-yr-old POTS patients comprising 13 with low-flow POTS, 14 with normal-flow POTS, and 5 with high-flow POTS and 12 comparably aged healthy volunteers. We measured changes in impedance plethysmographic (IPG) indexes of blood volume and blood flow within thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations in the supine posture and during incremental tilt to 20 degrees, 35 degrees, and 70 degrees. We validated IPG measures of thoracic and splanchnic blood flow against indocyanine green dye-dilution measurements. We validated IPG leg blood flow against venous occlusion plethysmography. Control subjects developed progressive vasoconstriction with incremental tilt. Splanchnic blood flow was increased in the supine position in normal-flow POTS, despite marked peripheral vasoconstriction, and did not change during incremental tilt, producing progressive splanchnic hypervolemia. Absolute hypovolemia was present in low-flow POTS, all supine flows and volumes were reduced, there was no vasoconstriction with tilt in all segments, and segmental volumes tended to increase uniformly throughout tilt. Lower body (pelvic and leg) flows were increased in high-flow POTS at all angles, with consequent lower body hypervolemia during tilt. Our main finding is selective and maintained orthostatic splanchnic vasodilation in normal-flow POTS, despite marked peripheral vasoconstriction in these same patients. Local splanchnic vasoregulatory factors may counteract vasoconstriction and venoconstriction in these patients. Lower body vasoconstriction in high-flow POTS was abnormal, and vasoconstriction in low-flow POTS was sustained at initially elevated supine levels.  相似文献   

12.
Previous studies showed that the arterial baroreflex opposes the pressor response mediated by muscle metaboreflex activation during mild dynamic exercise. However, no studies have investigated the mechanisms contributing to metaboreflex-mediated pressor responses during dynamic exercise after arterial baroreceptor denervation. Therefore, we investigated the contribution of cardiac output (CO) and peripheral vasoconstriction in mediating the pressor response to graded reductions in hindlimb perfusion in conscious, chronically instrumented dogs before and after sinoaortic denervation (SAD) during mild and moderate exercise. In control experiments, the metaboreflex pressor responses were mediated via increases in CO. After SAD, the metaboreflex pressor responses were significantly greater and significantly smaller increases in CO occurred. During control experiments, nonischemic vascular conductance (NIVC) did not change with muscle metaboreflex activation, whereas after SAD NIVC significantly decreased with metaboreflex activation; thus SAD shifted the mechanisms of the muscle metaboreflex from mainly increases in CO to combined cardiac and peripheral vasoconstrictor responses. We conclude that the major mechanism by which the arterial baroreflex buffers the muscle metaboreflex is inhibition of metaboreflex-mediated peripheral vasoconstriction.  相似文献   

13.
Learned control of heart rate during dynamic exercise in nonhuman primates   总被引:1,自引:0,他引:1  
The purpose of this study was to describe an animal model to test the relationships among the cardiovascular, pulmonary, and somatomotor command systems during exercise. Using operant conditioning, three chronically chaired monkeys (Macaca mulatta) were trained to exercise (to lift weights repeatedly), to attenuate their heart rate responses, and finally, both conditions were combined so that the animals were required to exercise and attenuate their heart rates. Heart rate, systolic and diastolic blood pressure, rate-pressure product, O2 and CO2 concentration in expired air, and number of weight lifts were recorded and compared between the two conditions, i.e., exercise only and combined exercise and heart rate slowing. In all animals heart rate increases in response to exercise were significantly less (P less than 0.05) during combined conditions than during exercise only: the mean heart rate increase was 41 beats/min less during combined sessions than during exercise only sessions for monkey 1, 13.5 beats/min less for monkey 2, and 9 beats/min less for monkey 3. Rate-pressure product showed a consistent difference across animals paralleling the heart rate differences. This acquired response did not involve other cardiovascular and pulmonary parameters, which did not change systematically across animals. However, the pattern of cardiovascular reactivity in relation to O2 consumption (linear regression of heart rate and systolic or diastolic blood pressure on change in O2 consumption over many experiments) was attenuated during combined sessions relative to exercise only experiments. The relative attenuation of heart rate during combined sessions also remained significant when both experimental conditions were equated on the basis of work done. Therefore, this animal model shows a dissociation of cardiovascular, somatomotor, and pulmonary effects of central command.  相似文献   

14.
15.
We tested the hypothesis that dynamic exercise resets the operating point and attenuates the spontaneous gain of the arterial baroreflex regulation of mesenteric and hindlimb vascular conductance in hypertensive rats. Eleven adult male spontaneously hypertensive rats were chronically instrumented with left carotid arterial catheters and Doppler ultrasonic flow probes around the superior mesenteric and left common iliac arteries. After the rats recovered, arterial baroreflex function was examined by recording reflex changes in conductance in response to spontaneous changes in mean arterial pressure before exercise and during steady-state treadmill running at 6 and 18 m/min. Dynamic exercise reduced the spontaneous baroreflex gain of mesenteric conductance (by 51 and 36%) and maximum mesenteric conductance (by 24 and 32%) at 6 and 18 m/min, respectively. In sharp contrast, dynamic exercise increased the spontaneous maximum iliac conductance (by 32 and 47%) without changing the spontaneous gain. Sinoaortic denervation eliminated the relationship between mean arterial pressure and conductance by reducing the mesenteric (92%) and iliac (68%) vascular conductance gain. These results demonstrate that dynamic exercise has differential effects on the regulation of mesenteric and iliac vascular conductance in hypertensive rats.  相似文献   

16.
During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing. The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse least squares problem for parameter estimation and successfully demonstrate that our mathematical model can accurately predict heart rate dynamics observed in data obtained from healthy young, healthy elderly, and hypertensive elderly subjects. One of our key findings indicates that, to successfully validate our model against clinical data, it is necessary to include the vestibulo-sympathetic reflex. Furthermore, our model reveals that the transfer between the nerve firing and blood pressure is nonlinear and follows a hysteresis curve. In healthy young people, the hysteresis loop is wide, whereas, in healthy and hypertensive elderly people, the hysteresis loop shifts to higher blood pressure values, and its area is diminished. Finally, for hypertensive elderly people, the hysteresis loop is generally not closed, indicating that, during postural change from sitting to standing, baroreflex modulation does not return to steady state during the first minute of standing.  相似文献   

17.
We have developed a laboratory exercise that demonstrates arterial baroreflex control of heart rate (HR) in the conscious unrestrained rat, incorporating graduate level physiological topics as well as a hands-on exposure to conscious animal research. This demonstration utilizes rats chronically instrumented to measure cardiac output (CO), HR, and arterial blood pressure in response to agents that raise or lower blood pressure. The HR response to progressive increases or decreases in blood pressure is recorded, and a baroreflex curve is generated by plotting mean arterial blood pressure (MABP) vs. HR. Observation of altered CO allows for discussion of the relationship between MAP, CO, HR, stroke volume, and total peripheral resistance. Administration of arginine vasopressin demonstrates the ability of this hormone to alter the sensitivity of the baroreflex. Throughout the demonstration, students answer questions from a handout about general cardiovascular physiology, specific pathways of agonists, and the baroreflex system, encouraging group and individual critical analysis of the results. Interpretation of the data reemphasizes lecture material and allows students to observe the baroreflex response in a physiological setting.  相似文献   

18.
To test whether cerebral autoregulation is impaired in patients with postural tachycardia syndrome (POTS), we evaluated 17 healthy control subjects and 27 patients with POTS. Blood pressure, heart rate, and cerebral blood velocity (transcranial Doppler) were recorded at rest and during 80 degree head-up tilt (HUT). Static cerebral autoregulation, as assessed from the change in cerebrovascular resistance during HUT, was the same in POTS and in controls. The properties of dynamic cerebral autoregulation were inferred from transfer gain, coherence, and phase of the relationship between blood pressure and cerebral blood velocity estimated from filtered data segments (0.02-0.8 Hz). Dynamic cerebral autoregulation of patients with POTS did not differ from that of controls. The patients' dynamic cerebral autoregulation did not change over the course of HUT, despite increased tachycardia suggestive of worsening orthostatic stress. Inflation of military anti-shock trouser pants substantially reduced the tachycardia of patients with POTS without affecting cerebral autoregulation. Symptoms of orthostatic intolerance were reduced in one-half of the patients following military anti-shock trouser pants inflation. We conclude that cerebral perfusion and autoregulation in many patients with POTS do not differ from that of normal control subjects.  相似文献   

19.
The objective of the present study was to evaluate the baroreflex and the autonomic control of heart rate (HR) in renovascular hypertensive mice. Experiments were carried out in conscious C57BL/6 (n = 16) mice 28 days after a 2-kidney 1-clip procedure (2K1C mice) or a sham operation (sham mice). Baroreflex sensitivity was evaluated by measuring changes in heart rate (HR) in response to increases or decreases in mean arterial pressure (MAP) induced by phenylephrine or sodium nitroprusside. Cardiac autonomic tone was determined by use of atropine and atenolol. Basal HR and MAP were significantly higher in 2K1C mice than in sham mice. The reflex tachycardia induced by decreases in MAP was greatly attenuated in 2K1C mice compared with sham mice. Consequently, the baroreflex sensitivity was greatly decreased (2.2 +/- 0.4 vs. 4.4 +/- 0.3 beats x min(-1) x mmHg(-1)) in hypertensive mice compared with sham mice. The reflex bradycardia induced by increases in MAP and the baroreflex sensitivity were similar in both groups. Evaluation of autonomic control of HR showed an increased sympathetic tone and a tendency to a decreased vagal tone in 2K1C mice compared with that in sham mice. 2K1C hypertension in mice is accompanied by resting tachycardia, increased predominance of the cardiac sympathetic tone over the cardiac vagal tone, and impairment of baroreflex sensitivity.  相似文献   

20.
Prior work demonstrated dependence of the change in blood pressure during the Valsalva maneuver (VM) on the extent of thoracic hypovolemia and splanchnic hypervolemia. Thoracic hypovolemia and splanchnic hypervolemia characterize certain patients with postural tachycardia syndrome (POTS) during orthostatic stress. These patients also experience abnormal phase II hypotension and phase IV hypertension during VM. We hypothesize that reduced splanchnic arterial resistance explains aberrant VM results in these patients. We studied 17 POTS patients aged 15-23 yr with normal resting peripheral blood flow by strain gauge plethysmography and 10 comparably aged healthy volunteers. All had normal blood volumes by dye dilution. We assessed changes in estimated thoracic, splanchnic, pelvic-thigh, and lower leg blood volume and blood flow by impedance plethysmography throughout VM performed in the supine position. Baseline splanchnic blood flow was increased and calculated arterial resistance was decreased in POTS compared with control subjects. Splanchnic resistance decreased and flow increased in POTS subjects, whereas splanchnic resistance increased and flow decreased in control subjects during stage II of VM. This was associated with increased splanchnic blood volume, decreased thoracic blood volume, increased heart rate, and decreased blood pressure in POTS. Pelvic and leg resistances were increased above control and remained so during stage IV of VM, accounting for the increased blood pressure overshoot in POTS. Thus splanchnic hyperemia and hypervolemia are related to excessive phase II blood pressure reduction in POTS despite intense peripheral vasoconstriction. Factors other than autonomic dysfunction may play a role in POTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号