首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CYP51 family is an intriguing subject for fundamental P450 structure/function studies and is also an important clinical drug target. This review updates information on the variety of the CYP51 family members, including their physiological roles, natural substrates and substrate preferences, and catalytic properties in vitro. We present experimental support for the notion that specific conserved regions in the P450 sequences represent a CYP51 signature. Two possible roles of CYP51 in P450 evolution are discussed and the major approaches for CYP51 inhibition are summarized.  相似文献   

2.
Room temperature and low temperature magnetic circular dichroism (MCD) in the intraligand spin-forbidden singlet-triplet π-π transition for the coordinated β-diketonate ligands were observed for the β-diketonato Ni(II) complexes with a chelated imino or nitronyl nitroxide radical, but not for the β-diketonato Ni(II) complexes without the radical ligands. This is elucidated by the borrowing mechanism from the singlet-singlet π-π transition through the hypothetical interligand β-diketonate-to-radical charge transfer (LLCT) in contrast to the case of Cr(III) complexes.  相似文献   

3.
4.
The oxoiron(IV) complexes of two 6-substituted tris(2-pyridylmethyl)amine ligand derivatives have been generated and characterized with respect to their spectroscopic and reactivity properties. The introduction of an α-substituent maintains the low-spin nature of the oxoiron(IV) unit but weakens the ligand field, as evidenced by red shifts in its characteristic near-IR chromophore. While its hydrogen-atom abstraction ability is only slightly affected, the oxo-transfer reactivity of the oxoiron(IV) center is significantly enhanced relative to that of the parent complex. These results demonstrate that the ligand environment plays a key role in modulating the reactivity of this important biological oxidant. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. An erratum to this article can be found at  相似文献   

5.
A spectral study was carried out of the green pigments produced by allyl-containing drugs and a comparison made with N-methylated octaethylporphyrin and 2,4-diformyldeuteroporphyrin. The green pigments resemble the former (and markedly differ from the latter) in the intensity of the bathochromic shifts, titration curves with trifluoroacetic acid and rate of incorporation of metal ions in vitro.  相似文献   

6.
1. The topography of cytochrome P-450 in vesicles from smooth endoplasmic reticulum of rat liver has been examined. Approx. 50% of the cytochrome is directly accessible to the action of trypsin in intact vesicles whereas the remainder is inaccessible and partitioned between luminal-facing or phospholipid-embedded loci. Analysis by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis reveals three major species of the cytochrome. Of these, the variant with a mol.wt. of 52000 is induced by phenobarbitone and this species is susceptible to trypsin. 2. After trypsin treatment of smooth membrane, some NADPH–cytochrome P-450 (cytochrome c) reductase activity remains and this remaining activity is enhanced by treatment with 0.05% deoxycholate, which renders the membranes permeable to macromolecules. In non-trypsin-treated control membranes the reductase activity is increased to a similar extent. These observations suggest an asymmetric distribution of NADPH–cytochrome P-450 (cytochrome c) reductase in the membrane. 3. As compared with dithionite, NADPH reduces only 44% of the cytochrome P-450 present in intact membranes. After tryptic digestion, none of the remaining cytochrome P-450 is reducible by NADPH. 4. In the presence of both a superoxide-generating system (xanthine plus xanthine oxidase) and NADPH, all the cytochrome P-450 in intact membrane (as judged by dithionite reducibility) is reduced. The cytochrome P-450 remaining after trypsin treatment of smooth vesicles cannot be reduced by this method. 5. The superoxide-dependent reduction of cytochrome P-450 is prevented by treatment of the membranes with mersalyl, which inhibits NADPH–cytochrome P-450 (cytochrome c) reductase. Thus the effect of superoxide may involve NADPH–cytochrome P-450 reductase and cytosolically orientated membrane factor(s).  相似文献   

7.
Spectroscopic, enzyme-inhibition, and free-radical scavenging properties of a series of hydrazide ligands and their vanadium(IV) complexes have been investigated. Analytical and spectral data indicate the presence of a dimeric unit with two oxovanadium(IV) ions (VO2+) coordinated with two hydrazide ligands along with two water molecules. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. Binding of the coordinating solvent such as DMSO is indicated at the 6th position of vanadium in the dimeric unit followed by conversion to a monomeric intermediate species, [VOL(DMSO)3]1+ (L = hydrazide ligand). The free hydrazide ligands are inactive against snake venom phosphodiesterase I (SVPD), whereas oxovanadium(IV) complexes of these ligands show varying degrees of inhibition and are found to be non-competitive inhibitors. The superoxide and nitric oxide radical scavenging properties have been determined. Hydrazide ligands are inactive against these free radicals, whereas their V(IV) complexes show varying degrees of inhibition. Structure–activity relationship studies indicate that the electronic and/or steric factors that change the geometry of the complexes play an important role in their inhibitory potential against SVPD and free radicals.  相似文献   

8.
Under intense soft X-ray irradiation, we have observed time-dependent changes in the soft X-ray spectra of virtually all the Fe coordination complexes that we have examined, indicating chemical transformation of the compound under study. Each compound, with oxidation states ranging from Fe(IV) to Fe(0), has been studied with either Fe L-edge spectroscopy or N K-edge spectroscopy. We find that very often a well-defined spectroscopic change occurs, at least initially, which is apparently capable of straightforward interpretation in terms of X-ray induced photoreduction, photooxidation or ligand photolysis. We briefly discuss the probable chemical nature of the changes and then estimate the rate of chemical change, thereby establishing the necessary radiation dose. We also demonstrate that the photochemistry not only depends on the Fe oxidation state but also the coordination chemistry of the complex. It seems that a proper understanding of such X-ray photochemical effects could well greatly assist the assignment of soft X-ray spectra of uncharacterized metal sites.  相似文献   

9.
Azoles have been applied widely to combat pathogenic fungi in medicine and agriculture and, consequently, loss of efficacy has occurred in populations of some species. Often, but not always, resistance was found to result from amino acid substitutions in the molecular target of azoles, 14α-sterol demethylase (CYP51 syn. ERG11). This review summarizes CYP51 function, evolution, and structure. Furthermore, we compare the occurrence and contribution of CYP51 substitutions to azole resistance in clinical and field isolates of important fungal pathogens. Although no crystal structure is available yet for any fungal CYP51, homology modeling using structures from other origins as template allowed deducing models for fungal orthologs. These models served to map amino acid changes known from clinical and field isolates. We conclude with describing the potential consequences of these changes on the topology of the protein to explain CYP51-based azole resistance. Knowledge gained from molecular modeling and resistance research will help to develop novel azole structures.  相似文献   

10.
11.
12.
A new ligand, L, bearing four cyanoethyl pendant groups has been synthesized by reaction of the precursor ligand L1 with acrylonitrile. The X-ray crystal structure of ligand L reveals the presence of a nanotubular structure in the solid state connected by intermolecular π,π-stacking interactions between adjacent pyridine rings. The coordination capability towards transition metal ions [Co(II), Ni(II) and Cu(II)] has been investigated starting from the hydrated nitrate and perchlorate salts of the metals. The new ligand L and the metal complexes obtained were characterized by elemental analysis, FAB MS, conductivity measurements, magnetic studies, IR and UV-vis spectroscopy. Furthermore, the crystal structure of ligand L and of the complexes [CoL][Co(NO3)4] · CH3CN (1), [NiL](NO3)2 (3), [NiL](ClO4)2 · CH3CN · 3H2O (4), [CuL][Cu(NO3)3(H2O)2](NO3) · H2O (5) and [CuL](ClO4)2 · 2CH3CN (6) were determined. The nitrate ions in the complexes are located near the pyridine rings and π,π-stacking interactions between pyridine rings, nitrate ions and nitrile groups have been found.  相似文献   

13.
Cytochromes P450 (CYPs) form a gene superfamily involved in the biotransformation of numerous endogenous and exogenous natural and synthetic compounds. In humans, CYP3A4 is regarded as one of the most important CYPs due to its abundance in liver and its capacity to metabolize more than 50% of all clinically used drugs. It has been suggested that all CYP3s arose from a common ancestral gene lineage that diverged between 800 and 1100 million years ago, before the deuterostome-protostome split. While CYP3s are well known in mammals and have been described in lower vertebrates, they have not been reported in non-vertebrate deuterostomes. Members of the genus Ciona belong to the tunicates, whose lineage is thought to be the most basal among the chordates, and from which the vertebrate line diverged. Here we describe the cloning, exon-intron structure, phylogeny, and estimated expression of four novel genes from Ciona intestinalis. We also describe the gene structure and phylogeny of homologous genes in Ciona savignyi. Comparing these genes with other members of the CYP clan 3, show that the Ciona sequences bear remarkable similarity to vertebrate CYP3A genes, and may be an early deuterostome CYP3 line.  相似文献   

14.
The encounter between anisotropic agents in diffusion-controlled reactions is a topic of very general relevance in chemistry and biology. Here we introduce a simplified model of encounter of an isotropic molecule with a pair of partially reacting agents and apply it to the encounter reaction between an antibody and its antigen. We reduce the problem to the solution of dual series relations, which can be solved iteratively, yielding the exact solution for the encounter rate constant at any desired order of accuracy. We quantify the encounter effectiveness by means of a simple indicator and show that the two binding centers systematically behave in an anti-cooperative fashion. However, we demonstrate that a reduction of the binding active sites allows the composite molecule to recover binding effectiveness, in spite of the overall reduction of the rate constant. In addition, we provide a simple formula that enables one to calculate the anti-cooperativity as a function of the size of the binding site for any values of the separation between the two active lobes and of the antigen size. Finally, some biological implications of our results are discussed.  相似文献   

15.
Novel triorganotin(IV) derivatives of β-diketonate Q ligands (HQ in general, in detail HQfur = 1-phenyl-3-methyl-4-(2-furancarbonyl)-pyrazol-5-one, HQthi = 1-phenyl-3-methyl-4-(2-thienylcarbonyl)-pyrazol-5-one) of general formula (Q)SnR3·xH2O (R = Ph, x = 0; R = Bun or Me, x = 1) have been synthesized and spectroscopically and thermally characterized. Triphenyltin(IV) complexes have been isolated as anhydrous compounds while trialkyltin(IV) are always monohydrated. The structures of (Qfur)SnPh3 and (Qthi)SnMe3(OH2) are recorded. The tin atoms are five-coordinate in both. In the first, the pyrazolonate ligand behaves as an O,O′-bidentate; there are two similar but independent molecules in the structure. In the quasi-trigonal-bipyramidal environments, Sn-O(acyl) are 2.478(3), 2.364(3), Sn-O(pyrazolonate) 2.050(2), 2.079(2), Sn-C 2.123(4)-2.162(3) Å with the longer O(acyl) and a phenyl group quasi-trans (O-Sn-C 162.5(1), 160.8(1)°). In (Qthi)SnMe3(OH2), the three methyl groups are equatorial (Sn-C 2.1259(9)-2.1380(8) Å); Sn-O(Qthi,OH2) are 2.2143(5), 2.3350(6) Å, O-Sn-O 175.36(2)°. Trimethyltin(IV) derivatives decompose on heating with release of H2O and SnMe4 and formation of (Q)2SnMe2. Decomposition occurs also within two days after dissolution of (Q)SnMe3(OH2) in chloroform.  相似文献   

16.
Cytochrome P450cam (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450cam mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate. Mutant (E156G/V247F/V253G/F256S) had the highest maximal velocity in the conversion of 3-chloroindole to isatin, whereas mutants (T56A/N116H/D297N) and (G60S/Y75H) had highest kcat/KM values. Six of the mutants had more than one mutation, and within this set, mutation of residues 297 and 179 was observed twice. Docking simulations were performed on models of the mutant enzymes; the wild-type did not accommodate 3-chloroindole in the active site, whereas all the mutants did. We propose two potential reaction pathways for dechlorination of 3-chloroindole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

17.
The cytochrome P450s (CYPs) are the major enzymatic detoxification and drug metabolism system. Recently, it has become clear that several CYP isoforms exhibit positive and negative homotropic cooperativity. However, the toxicological implications of allosteric kinetics have not been considered, nor understood. The allosteric kinetics are particularly enigmatic in several respects. In many cases, CYPs bioactivate substrates to more toxic products, thus making it difficult to rationalize a functional advantage for positive cooperativity. Also, CYPs exhibit cooperativity with many structurally diverse ligands, in marked contrast to the specificity observed with other allosteric systems. Here, kinetic simulations are used to compare the probabilistic time- and concentration-dependent integrated toxicity function during conversion of substrate to product for CYP models exhibiting Michaelis-Menten (non-cooperative) kinetics, positive cooperativity, or negative cooperativity. The results demonstrate that, at low substrate concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. When present, the advantage results from enhanced "distribution" of toxin in two pools, substrate and product, for an extended period, thus minimizing the chance that either exceeds its toxic threshold. At intermediate concentrations, the allosteric kinetics can be a modest advantage or modest disadvantage, depending on the kinetic parameters. However, at high substrate concentrations associated with a high probability of toxicity, fast turnover is desirable, and this advantage is provided also by the cooperative enzymes. For the positive homotropic cooperativity, the allosteric kinetics minimize the probability of toxicity over the widest range of system parameters. Furthermore, this apparent functional cooperativity is achieved without specific molecular recognition that is the hallmark of "traditional" allostery.  相似文献   

18.
19.
α-Tocopherol (α-TOH) is the primary lipophilic radical trapping antioxidant in human tissues. Oxidative catabolism of α-tocopherol (αTOH) is initiated by ω-hydroxylation of the terminal carbon (C-13) of the isoprenoid sidechain followed by oxidative transformations that sequentially truncate the chain to yield the 2,5,7,8-tetramethyl(3′carboxyethyl)-6-hydroxychroman (α-CEHC). After conjugation to glucuronic acid, 3′-carboxyethyl-6-hydroxychroman glucuronide is excreted in urine. We report here that the same enzyme that accomplishes this task, the cytochrome P450 monooxygenase CYP-4F2, can also ω-hydroxylate the terminal carbon of α-tocopheryl quinone. A standard sample of ω-OH-α-tocopheryl quinone (ω-OH-α-TQ) was synthesized as a mixture of stereoisomers by allylic oxidation of α-tocotrienol using SeO2 followed by double-bond reduction and oxidation to the quinone. After incubating human liver microsomes or insect cell microsomes expressing only recombinant human CYP-4F2, cytochrome b5, and NADPH P450 reductase with d6-α-tocopheryl quinone (d6-αTQ), we showed that the ω-hydroxylated (13-OH) d6-α-TQ was produced. We further identified the production of the terminal carboxylic acid d6-13-COOH-αTQ. The ramifications of this discovery to the understanding of tocopherol utilization and metabolism, including the quantitative importance of the αTQ-ω-hydroxylase pathway in humans, are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号