首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of lysozyme from guinea hen egg white (GEWL), which differs from hen egg white lysozyme (HEWL) by ten amino acid substitutions, was investigated by nuclear magnetic resonance (NMR) spectroscopy. GEWL and HEWL were very similar to each other in their tertiary structure as judged from the profile of 1H-NMR spectra, pH titration, and an N-acetylglucosamine trisaccharide [(GlcNAc)3 binding experiment. However, we have noticed several characteristics which distinguish GEWL from HEWL. The signal of Trp 108 indole N1H of GEWL was shifted upfield by about 0.3 ppm when compared with that of HEWL, and its hydrogen exchange was faster than that of HEWL. The pKa values of Glu 35 estimated from the pH titration curve of Trp 108 indole N1H were different between GEWL and HEWL. From a careful examination of spectral changes caused by (GlcNAc)3 binding, the changes in the chemical shift values of Trp 28 C5H and Asn 59 alpha CH of GEWL were found to be slightly larger than those of HEWL. Ile 55 of HEWL is replaced by valine in GEWL. Such a replacement may affect the neighboring hydrogen bonding between the main chain C = O of Leu 56 and Trp 108 indole N1H, resulting in a change in the microenvironment of the substrate-binding site near Trp 108.  相似文献   

2.
Interaction of 3‐styrylindoles 1–8 viz. 3‐(2‐phenylethenyl‐E)‐NH‐indole (1), 3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (2), 5‐bromo‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (3), 5‐methoxy‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (4), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐NH‐indole (5), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐N‐ethylindole (6), 5‐bromo‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (7) and 5‐methoxy‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (8) with bovine serum albumin (BSA) was examined by UV–vis and steady‐state fluorescence spectroscopy. The fluorescence intensity of 1–8 increases with the increasing BSA concentration. Upon binding with BSA, while 1 and 5–8 show a blue shift in their λf max, 2–4 do not exhibit such behavior. Compounds 1–8 also quench the 345 nm fluorescence of BSA in phosphate buffer (λex, 280 nm). These compounds intercalate in the hydrophobic regions of BSA, as evidenced by the determination of BSA binding site micropolarity using compounds 2–8. As evidenced by the estimation of energy transfer efficiency and distance between the donor (BSA‐Trp‐212) and the acceptor (3‐styrylindoles), the halo‐substituted compounds 3 and 7 interact with BSA more effectively than the other 3‐strylindoles. These compounds have potential for use as neutral and hydrophobic fluorescence probes for examining the microenvironments in proteins, polymers, micelles, etc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
To obtain information on the structural and functional role of highly conserved amino acid residues in the B870 alpha and beta light-harvesting polypeptides of Rhodobacter capsulatus, site-directed mutagenesis was performed. 18 mutants with single amino acid substitutions at nine different positions in the B870 antenna polypeptides were prepared in a B800-850-lacking strain. The characterization of the resulting phenotypes was based on a quantification of the core-complex elements (reaction center, light-harvesting polypeptides, bacteriochlorophyll a and carotenoid) and the core-complex spectral characteristics (absorption maximum, absorption coefficient and fluorescence intensity). These data generally showed that strong structural effects were caused by the amino acid substitutions. Thus, the three tryptophan exchanges at the position alpha 8 resulted in either the absence of a core complex (alpha Trp8----Leu), the absence of the core antenna (alpha Trp8----Ala) or a reduction in the carotenoid content (alpha Trp8----Tyr). Likewise, the mutants alpha Pro13Gly (i.e. alpha Pro13----Gly), beta Gly10Val and alpha Phe23Ala demonstrated an abnormal protein/pigment ratio in the core antenna, while a drastically reduced antenna size resulted from the amino acid exchange beta Arg45Asp. In contrast to the structural effects, the absorption maxima and the fluorescence intensities of the mutant antennae differed only slightly from the wild type. The strongest blue shift of the bacteriochlorophyll a (8-11 nm) was induced by substitutions of the Trp at position alpha 43 (alpha Trp43----Ala, Leu or Tyr). Contrary to the other spectral effects, the absorption coefficient of bacteriochlorophyll a was strongly influenced by the amino acid substitutions and varied by 1.6-times less (beta Arg45Asp) and 1.3-times greater (alpha Phe25Ala) than normal. The antenna-free mutant, alpha Trp8Ala, yielded a high rate of B800-850 revertants during phototrophic growth, indicating a direct energy transfer from the B800-850 antenna to the reaction center in these strains. Although conditions for growth were generally observed to influence phenotypic expression, the structural as well as spectral effects were demonstrated to differ to the greatest extent between chemotrophically grown and phototrophically grown cells.  相似文献   

4.
The isolated N-terminal SH3 domain of the Drosophila signal transduction protein Drk (drkN SH3) is a useful model for the study of residual structure and fluctuating structure in disordered proteins since it exists in slow exchange between a folded (Fexch) and compact unfolded (Uexch) state in roughly equal proportions under nondenaturing conditions. The single tryptophan residue, Trp36, is believed to play a key role in forming a non-native hydrophobic cluster in the Uexch state, with a number of long-range nuclear Overhauser contacts (NOEs) observed primarily to the indole proton. Substitution of Trp36 for 5-fluoro-Trp36 resulted in a substantial shift in the equilibrium to favor the Fexch state. A variety of 19F NMR measurements were performed to investigate the degree of solvent exposure and hydrophobicity associated with the 5-fluoro position in both the Fexch and Uexch states. Ambient T1 measurements and H2O/D2O solvent isotope effects indicated extensive protein contacts to the 5-fluoro position in the Fexch state and greater solvent exposure in the Uexch state. This was corroborated by the measurements of paramagnetic effects (chemical shift perturbations and T1 relaxation enhancement) from dissolved oxygen at a partial pressure of 20 atm. In contrast, paramagnetic effects from dissolved oxygen revealed less solvent exposure to the indole proton of Trp36 in the Uexch state than that observed for the Fexch state, consistent with the model in which Trp36 indole belongs to a non-native cluster. Thus, although the Uexch state may be described as a dynamically interconverting ensemble of conformers, there appears to be significant asymmetry in the environment of the indole group and the six-membered ring or backbone of Trp36. This implied lack of averaging of a side chain position is in contrast to the general view of fluctuating side chains within disordered states.  相似文献   

5.
Quantum chemical methods AM1 and PM3 and chromatographic methods were used to qualitatively characterize pathways of bacterial production of indole-3-acetic acid (IAA). The standard free energy changes (delta G(o)'sum) for the synthesis of tryptophan (Trp) from chorismic acid via anthranilic acid and indole were calculated, as were those for several possible pathways for the synthesis of IAA from Trp, namely via indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and indole-3-acetonitrile (IAN). The delta G(o)'sum for Trp synthesis from chorismic acid was -402 (-434) kJ.mol-1 (values in parentheses were calculated by PM3). The delta G(o)'sum for IAA synthesis from Trp were -565 (-548) kJ.mol-1 for the IAN pathway, -481 (-506) kJ.mol-1 for the IAM pathway, and -289 (-306) kJ.mol-1 for the IPyA pathway. By HPLC analysis, the possibility was assessed that indole, anthranilic acid, and Trp might be utilized as precursors for IAA synthesis by Azospirillum brasilense strain Sp 245. The results indicate that there is a high motive force for Trp synthesis from chorismic acid and for IAA synthesis from Trp, and make it unlikely that anthranilic acid and indole act as the precursors to IAA in a Trp-independent pathway.  相似文献   

6.
The interactions between well‐dispersed multiwalled carbon nanotubes (MWCNTs) and catalase (CAT) were investigated. The activity of CAT was inhibited with the addition of MWCNTs. After deducting the inner filter effect, the fluorescence spectra revealed that the tryptophan (Trp) residues were exposed and the fluorescence intensities of CAT increased with the increase in the MWCNTs concentration. At the same time, the environment of the Trp residues became more hydrophobic. The results of UV–vis absorption spectroscopy and CD spectra indicated that the secondary structure of CAT had been changed, and the amino acid residues were located in a more hydrophobic environment. Meanwhile, the UV–vis spectra indicated that the conformation of the heme porphyrin rings was changed. The microenvironment of CAT activity sites may be interfered by MWCNTs. This research showed that MWCNTs could not only contribute to the conformational changes of protein but also change the enzyme function.  相似文献   

7.
The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.  相似文献   

8.
Protein structural changes during the photocycle of bacteriorhodopsin were examined by time-resolved ultraviolet resonance Raman (UVRR) spectroscopy. Most of the 244-nm UVRR difference signals of Trp were assigned to either Trp182 or Trp189 using the Trp182 --> Phe and Trp189 --> Phe mutants. The W17 mode of Trp182 shows a wavenumber downshift in the M(1) --> M(2) transition, indicating an increase in hydrogen bonding strength at the indole nitrogen. On the other hand, Trp189 shows Raman intensity increases of the W16 and W18 modes ascribable to an increased hydrophobic interaction. These observations suggest that the tilt of helix F, which ensures that reprotonation of the Schiff base is from the cytoplasmic side, occurs in the M(1) --> M(2) transition. In the M(2) --> N transition, the environment of Trp189 returns to the initial state, whereas the hydrophobic interaction of Trp182 decreases drastically. The decrease in hydrophobic interaction of Trp182 in the N state suggests an invasion of water molecules that promote the proton transfer from Asp96 to the Schiff base. Structural reorganization of the protein after the tilt of helix F may be important for efficient reprotonation of the Schiff base.  相似文献   

9.
In the hydrolytic reaction catalyzed by an endoglucanase from a Bacillus strain (endoglucanase K), 2 of 12 Trp residues, Trp174 and Trp243, are responsible for binding of the substrate and/or for the catalysis (Kawaminami, S., Ozaki, K., Sumitomo, N., Hayashi, Y., Ito, S., Shimada, I., and Arata, Y. (1994) J. Biol. Chem. 269, 28752-28756). Here we report results of a stable isotope-aided NMR analysis of the active site of endoglucanase K, using Trp174 and Trp243 as structural probes. Hydrogen-deuterium exchange experiments performed for the NH protons of main and side chains of Trp residues revealed that Trp174 and Trp243 are located in the hydrophilic and hydrophobic microenvironments in the active site, respectively. We also carried out pH titration experiments for indole C2 proton resonances of Trp residues and measured the pH dependence of specific activities for wild-type endoglucanase K and its mutants in which Glu or Asp residues are replaced with their respective amide forms. On the basis of the results obtained from the present study, we conclude that (a) Glu130 and Asp191, which are in spatial proximity to Trp174 and Trp243 in the active site, play a crucial role in the enzymatic activity; (b) Glu130 and Asp191 interact with each other in the active site, leading to an increase in the pKa values to 5.5 for both amino acid residues; and (c) the pKa values of Glu130 and Asp191 would lead to an unusually narrow pH-activity profile of the endoglucanase K.  相似文献   

10.
Lew S  Ren J  London E 《Biochemistry》2000,39(32):9632-9640
To explore the influence of amino acid composition on the behavior of membrane-inserted alpha-helices, we examined the behavior of Lys-flanked polyleucyl (pLeu) helices containing a single polar/ionizable residue within their hydrophobic core. To evaluate the location of the helices within the membrane by fluorescence, each contained a Trp residue at the center of the sequence. When incorporated into dioleoylphosphatidylcholine (DOPC) model membrane vesicles, pLeu helices with or without a single Ser, Asn, Lys, or Asp residue in the hydrophobic core maintained a transmembrane state (named the N state) at neutral and acidic pH. In this state, the central Trp exhibited highly blue-shifted fluorescence, and fluorescence quenching by nitroxide-labeled lipids showed it located at the bilayer center. A state in which Trp fluorescence red-shifted by several nanometers (named the B state) was observed above pH 10-11. B state formation appears to result from deprotonation of the flanking Lys residues. Despite the red shift in Trp emission, fluorescence quenching showed that in the B state the Trp at most is only slightly shallower than in the N state, suggesting the B state also is a transmembrane or near-transmembrane structure. The B state is characterized by increased helix oligomerization, as shown by the dependence of Trp lambda(max) on the concentration of the peptide within the bilayer at high pH. The pLeu peptide with a Asp residue in the core underwent a pH-dependent transition at a lower pH than the other peptides (pH 8-9). At high pH, it exhibited both a more highly red-shifted fluorescence and shallower Trp location than the other peptides. This state (named the S state) did not exhibit a concentration-dependent Trp lambda(max). We attribute S state behavior to the formation of a charged Asp residue at high pH, and a consequent movement of the Asp toward the membrane surface, resulting in the formation of a nontransmembrane state. We conclude that a polar or ionizable residue can readily be tolerated in a single transmembrane helix, but that the charges on ionizable residues in the core and regions flanking the helix significantly modulate the stability of transmembrane insertion and/or helix-helix association.  相似文献   

11.
In this paper we report proton two-dimensional NMR experiments on isolated alpha chains from human hemoglobin A (HbA) in the monocarboxylated state. Several J-correlated and NOE spectra in water or deuterium water and phosphate buffer (100 mM) at 310 K and pH 5.6 were acquired and analysed for the sequential assignment of the proton resonances. In addition, we used the topological data obtained from the crystal structure of alpha subunits in the monocarboxylated HbA tetramer. The assigned resonances correspond to 70% of the amino acid residues. The present results provide information on the tertiary structure of isolated alpha chains in solution, particularly in the heme region. This structure may be compared with that of the a subunits in the tetrameric HbA(CO) in crystal by comparison of observed chemical shifts and those calculated from the X-ray atomic coordinates. Overall, the global folding of the two forms are highly similar. However, this analysis points out several local conformational differences in the heme pocket and the neighboring of the unique Trp residue. Possible explanations of these differences are discussed.  相似文献   

12.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

13.
Ni(II)-Fe(II) hybrid hemoglobins, alpha(Fe)2 beta(Ni)2 and alpha(Ni)2 beta(Fe)2 have been characterized by proton nuclear magnetic resonance with Ni(II) protoporphyrin IX (Ni-PP) incorporated in apoprotein, which serves as a permanent deoxyheme. alpha(Fe)2 beta(Ni)2, alpha(Ni)2 beta(Fe)2, and NiHb commonly show exchangeable proton resonances at 11 and 14 ppm, due to hydrogen-bonded protons in a deoxy-like structure. Upon binding of carbon monoxide (CO) to alpha(Fe)2 beta(Ni)2, these resonances disappear at pH 6.5 to pH 8.5. On the other hand, the complementary hybrid alpha(Ni)2 beta(Fe-CO)2 showed the 11 and 14 ppm resonances at low pH. Upon raising pH, the intensities of both resonances are reduced, although these changes are not synchronized. Electronic absorption spectra and hyperfine-shifted proton resonances indicate that the ligation of CO in the beta(Fe) subunits induced changes in the coordination and spin states of Ni-PP in the alpha subunits. In a deoxy-like structure, the coordination of Ni-PP in the alpha subunits is predominantly in a low-spin (S = 0) four-coordination state, whereas in an oxy-like structure the contribution of a high-spin (S = 1) five-coordination state markedly increased. Ni-PP in the beta subunits always takes a high-spin five-coordination state regardless of solution conditions and the state of ligation in the partner alpha(Fe) subunits. In the beta(Ni) subunits, a significant downfield shift of the proximal histidyl N delta H resonance and a change in the absorption spectrum of Ni-PP were detected, upon changing the quaternary structure of the hybrid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

15.
We have synthesized and examined the preferred conformation of a set of N-benzhydryl-glycolamide esters from N(alpha)-protected (or N(alpha)-blocked) alpha-amino acids. Experiments were performed in CDCl(3) solution by Fourier transform infrared absorption and (1)H-NMR techniques, and in the crystalline state by x-ray diffraction. The results of our analysis strongly support the view that this type of N(alpha)-acylated alpha-aminoacyl esters has a marked tendency to fold into a beta-turn conformation, the nature of which is dictated by the structural propensity of the amino acid constituent at the i+1 position.  相似文献   

16.
Raman spectroscopy was used to determine structural features of the native toxin alpha from Naja nigricollis, which contains only one Trp and one Tyr, and of chemically modified toxins having chromophores added to these two conserved aromatic amino acids. The percentages of secondary structure were determined by using amide I polypeptidic vibration analysis and are in agreement with X-ray structure [Low et al. (1976) Proc. Natl. Acad Sci. U.S.A. 73, 2991-2994] as well as with the geometry of the disulfide bridges estimated by using the v(S-S) vibrations. In the native toxin alpha, the single invariant tyrosine 25 appears to be buried in the structure and involved in a strong hydrogen bond. We have chemically modified these two invariant aromatic side chains by addition of chromophores. The presence of a (nitrophenyl)sulfenyl (NPS) chromophore bound to the Trp does not perturb the secondary structure of the toxin as shown by the analysis of the polypeptidic amide I vibrations; however, the environment of this Trp and the geometry of a disulfide bridge seem to be modified. The secondary structure is not affected by the presence of the NPS chromophore; therefore, the decrease in binding affinity observed after modification of Trp-29 by the reagent NPS-Cl [Faure et al. (1983) Biochemistry 22, 2068-2076] is due to an alteration of the environment of this aromatic amino acid and/or a steric hindrance and not to an overall modification of the toxin structure. The binding assays of [nitrotyrosyl]toxin show that after nitration the affinity toward the monoclonal antibody M alpha 1 is unchanged and that the affinity toward the cholinergic receptor (AcChR) from Torpedo marmorata remains high. We concluded that the structure of toxin alpha after adding the NO2 chromophore to Tyr-25 is the same as it is in native toxin.  相似文献   

17.
Podstawka E 《Biopolymers》2008,89(6):506-521
This work describes the molecular structure of bombesin (BN) and its analogs on the basis of the absorption infrared and Raman results described below. In these analogues is replaced one ([D-Phe12]BN, [Tyr4]BN, and [Lys3]BN) or two ([Tyr4,D-Phe12]BN, [D-Phe12,Leu14]BN, and [Leu13-(R)-Leu14]BN) amino acid residues within the peptide chain with a synthetic amino acid, creating antagonists to bombesin, which are useful in the treatment of cancer. It is also used surface enhanced Raman scattering (SERS) to study the differences and changes in the vibrational spectra of BN and its analogs, which were attached to an electrochemically roughened silver surface as these peptides interacted with target proteins. This work explores the use of SERS for molecules anchored to a macroscopic silver surface to interrogate the interaction of these peptides with protein receptors. The results presented here show that all peptides coordinate to the macroscopic silver surface through an indole ring and the methylene group of Trp8, the C==O fragment, and an amide bond; however, the orientation of these fragments on the electrochemically roughened silver surface and the strength of the interactions with this surface is slightly different for each peptide. For example, the interaction of --CH2-- of [D-Phe12]BN, [Tyr4,D-Phe12]BN, [D-Phe12,Leu14]BN, [Leu13-(R)-Leu14]BN, and [Lys3]BN with the silver surface perturbed the vertical orientation of the Trp8 indole ring on this surface. Hence, the indole ring adopted a close to perpendicular orientation on the silver surface for BN and [Tyr4]BN, only.  相似文献   

18.
The near-UV magnetic circular dichroism spectroscopy of the aromatic amino acid bands of hemoglobin was investigated as a potential probe of structural changes at the alpha(1)beta(2) interface during the allosteric transition. Allosteric effectors were used to direct carp and chemically modified human hemoglobins into the R (relaxed) or T (tense) state in order to determine the heme-ligation-independent spectral characteristics of the quaternary states. The tryptophan magnetic circular dichroism (MCD) peak observed at 293 nm in the R state of N-ethylsuccinimide- (NES-) des-Arg-modified human hemoglobin (Hb) was shifted to a slightly longer wavelength in the T state, consistent with the shift expected for tryptophan acting as a proton donor in a T-state hydrogen bond. Moreover, the increase observed in the T-state MCD intensity of this band relative to the R-state intensity was consistent with the effect expected for proton donation by tryptophan on the basis of the Michl perimeter model of aromatic MCD. The peak-to-trough magnitude of the R - T MCD difference spectrum is equal to 30% of the total R-state peak intensity contributed by all six tryptophans present in the human tetramer; the relative magnitude specific to the two beta37 tryptophans undergoing conformational change is estimated accordingly to be 3 times larger. The Trp-beta37 spectral shift, about 200 cm(-)(1), is in good agreement with the shifts observed in other H-bonded proton donors and provides corroborating spectral evidence for the formation in solution of a T-state Trp beta37-Asp alpha94 hydrogen bond observed in X-ray diffraction studies of deoxyHb crystals.  相似文献   

19.
Proton nuclear magnetic resonance spectroscopy has been used to detect two water molecules bound to residues in the active site of the Lactobacillus casei dihydrofolate reductase (DHFR). Their presence was detected by measuring nuclear Overhauser effects between NH protons in protein residues and protons in the individual bound water molecules in two-dimensional nuclear Overhauser effect spectroscopy (NOESY), in nuclear Overhauser effect spectroscopy in the rotating frame (ROESY) and three-dimensional 1H-15N ROESY-heteronuclear multiple quantum coherence spectra recorded on samples containing appropriately 15N-labelled DHFR. For the DHFR-methotrexate-NADPH complex, two bound molecules were found, one close to the Trp5 amide NH proton and the other near to the Trp21 indole HE1 proton: these correspond to two of the water molecules (Wat201 and Wat253) detected in the crystal structure studies described by Bolin and co-workers. However, the nuclear magnetic resonance experiments did not detect any of the other bound water molecules observed in the X-ray studies. The nuclear magnetic resonance results indicate that the two bound water molecules that were detected have lifetimes in the solution state that are longer than approximately two nanoseconds. This is of considerable interest, since one of these water molecules (Wat253) has been implicated as the likely proton donor in the catalytic reduction of dihydrofolate to tetrahydrofolate.  相似文献   

20.
L A Dick  G Heibel  E G Moore  T G Spiro 《Biochemistry》1999,38(20):6406-6410
UV resonance Raman difference spectra between ligated and deoxyhemoglobin contain tryptophan and tyrosine signals which arise from quaternary H-bonds in the T state, which are broken in the R state. These H-bonds are unaffected by bis(3,5-dibromosalicyl) fumarate cross-linking at the Lys alpha 99 residues, which prevents dissociation of Hb tetramers to dimers. However, when the pH is lowered from 9.0, or when NaCl is added, intensity is diminished for the tyrosine Y8 and tryptophan W3 bands of cross-linked deoxyHb, but not of native deoxyHb. This effect is attributed to weakening of tertiary H-bonds involving Tyr alpha 140 and Trp alpha 14, when the T state salt bridge between Val alpha 1 and Arg alpha 141 is formed via protonation of the terminal amino group and anion binding. The Tyr alpha 140-Val alpha 93 H-bond connects the Arg alpha 141-bearing H helix with the Lys alpha 99-bearing G helix. Weakening of the H-bond reflects a tension between the fumarate linker and the salt-bridge. This tension inhibits protonation of the Val alpha 1 amino terminus, thus accounting for the diminution of both proton [Bohr effect] and CO2 binding in the T state as a result of cross-linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号