首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The complete sequence of the Arabidopsis genome enables definitive characterization of multigene families and analysis of their phylogenetic relationships. Using a consensus sequence previously defined for glycosyltransferases that use small-molecular-weight acceptors, 107 gene sequences were identified in the Arabidopsis genome and used to construct a phylogenetic tree. Screening recombinant proteins for their catalytic activities in vitro has revealed enzymes active toward physiologically important substrates, including hormones and secondary metabolites. The aim of this study has been to use the phylogenetic relationships across the entire family to explore the evolution of substrate recognition and regioselectivity of glucosylation. Hydroxycoumarins have been used as the model substrates for the analysis in which 90 sequences have been assayed and 48 sequences shown to recognize these compounds. The study has revealed activity in 6 of the 14 phylogenetic groups of the multigene family, suggesting that basic features of substrate recognition are retained across substantial evolutionary periods.  相似文献   

2.
TetR家族调控链霉菌次级代谢的机制   总被引:1,自引:1,他引:0  
韩晓伟  沈月毛 《微生物学通报》2013,40(10):1831-1846
  相似文献   

3.

Background  

Secondary metabolites biosynthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) family of enzymes constitute several classes of therapeutically important natural products like erythromycin, rapamycin, cyclosporine etc. In view of their relevance for natural product based drug discovery, identification of novel secondary metabolite natural products by genome mining has been an area of active research. A number of different tailoring enzymes catalyze a variety of chemical modifications to the polyketide or nonribosomal peptide backbone of these secondary metabolites to enhance their structural diversity. Therefore, development of powerful bioinformatics methods for identification of these tailoring enzymes and assignment of their substrate specificity is crucial for deciphering novel secondary metabolites by genome mining.  相似文献   

4.
About 5% of the human genome consists of large-scale duplicated segments of almost identical sequences. Segmental duplications (SDs) have been proposed to be involved in non-allelic homologous recombination leading to recurrent genomic variation and disease. It has also been suggested that these SDs are associated with syntenic rearrangements that have shaped the human genome. We have analyzed 14 members of a single family of closely related SDs in the human genome, some of which are associated with common inversion polymorphisms at chromosomes 8p23 and 4p16. Comparative analysis with the mouse genome revealed syntenic inversions for these two human polymorphic loci. In addition, 12 of the 14 SDs, while absent in the mouse genome, occur at the breaks of synteny; suggesting a non-random involvement of these sequences in genome evolution. Furthermore, we observed a syntenic familial relationship between 8 and 12 breakpoint-loci, where broken synteny that ends at one family member resumes at another, even across different chromosomes. Subsequent genome-wide assessment revealed that this relationship, which we named continuation-of-synteny, is not limited to the 8p23 family and occurs 46 times in the human genome with high frequency at specific chromosomes. Our analysis supports a non-random breakage model of genomic evolution with an active involvement of segmental duplications for specific regions of the human genome. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
Transporters of secondary metabolites   总被引:8,自引:0,他引:8  
The membrane transport of plant secondary metabolites is a newly developing research area. Recent progress in genome and expressed sequence tag (EST) databases has revealed that many transporters and channels exist in plant genome. Studies of the genetic sequences that encode these proteins, and of phenotypes caused by the mutation of these sequences, have been used to characterize the membrane transport of plant secondary metabolites. Such studies have clarified that membrane transport is fairly specific and highly regulated for each secondary metabolite. Not only genes that are involved in the biosynthesis of secondary metabolites but also genes that are involved in their transport will be important for systematic metabolic engineering aimed at increasing the productivity of valuable secondary metabolites in planta.  相似文献   

6.
7.
Bacteriophage of the family Leviviridae have played an important role in molecular biology where representative species, such as Qβ and MS2, have been studied as model systems for replication, translation, and the role of secondary structure in gene regulation. Using nucleotide sequences from the coat and replicase genes we present the first statistical estimate of phylogeny for the family Leviviridae using maximum-likelihood and Bayesian estimation. Our analyses reveal that the coliphage species are a monophyletic group consisting of two clades representing the genera Levivirus and Allolevivirus. The Pseudomonas species PP7 diverged from its common ancestor with the coliphage prior to the ancient split between these genera and their subsequent diversification. Differences in genome size, gene composition, and gene expression are shown with a high probability to have changed along the lineage leading to the Allolevivirus through gene expansion. The change in genome size of the Allolevivirus ancestor may have catalyzed subsequent changes that led to their current genome organization and gene expression. Received: 3 March 2000 / Accepted: 17 October 2000  相似文献   

8.
ABSTRACT: BACKGROUND: The genus Saccharothrix is a representative of the family Pseudonocardiaceae, known to include producer strains of a wide variety of potent antibiotics. Saccharothrix espanaensis produces both saccharomicins A and B of the promising new class of heptadecaglycoside antibiotics, active against both bacteria and yeast. RESULTS: To better assess its capabilities, the complete genome sequence of S. espanaensis was established. With a size of 9,360,653 bp, coding for 8,501 genes, it stands alongside other Pseudonocardiaceae with large genomes. Besides a predicted core genome of 810 genes shared in the family, S. espanaensis has a large number of accessory genes: 2,967 singletons when compared to the family, of which 1,292 have no clear orthologs in the RefSeq database. The genome analysis revealed the presence of 26 biosynthetic gene clusters potentially encoding secondary metabolites. Among them, the cluster coding for the saccharomicins could be identified. CONCLUSION: S. espanaensis is the first completely sequenced species of the genus Saccharothrix. The genome discloses the cluster responsible for the biosynthesis of the saccharomicins, the largest oligosaccharide antibiotic currently identified. Moreover, the genome revealed 25 additional putative secondary metabolite gene clusters further suggesting the strain's potential for natural product synthesis.  相似文献   

9.
The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.  相似文献   

10.

Background  

Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs) are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters.  相似文献   

11.
Yeast mitochondrial DNA molecules have long, AT-rich intergenic spacers punctuated by short GC clusters. GC-rich elements have previously been characterized by others as preferred sites for intramolecular recombination leading to the formation of subgenomic petite molecules. In the present study we show that GC clusters are favored sites for intermolecular recombination between a petite and the wild-type grande genome. The petite studied retains 6.5 kb of mitochondrial DNA reiterated tandemly to form molecules consisting of repeated units. Genetic selection for integration of tandem 6.5 kb repeats of the petite into the grande genome yielded a novel recombination event. One of two crossovers in a double exchange event occurred as expected in the 6.5 kb of matching sequence between the genomes, whereas the second exchange involved a 44 bp GC cluster in the petite and another 44 bp GC cluster in the grande genome 700 bp proximal to the region of homology. Creation of a mitochondrial DNA molecule with a repetitive region led to secondary recombination events that generated a family of molecules with zero to several petite units. The finding that 44 bp GC clusters are preferred as sites for intermolecular exchange adds to the data on petite excision implicating these elements as recombinational hotspots in the yeast mitochondrial genome.  相似文献   

12.
MOTIVATION: Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. RESULTS: We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.  相似文献   

13.
Propagation of long terminal repeat (LTR)-bearing retrotransposons and retroviruses requires integrase (IN, EC 2.7.7.-), encoded by the retroelements themselves, which mediates the insertion of cDNA copies back into the genome. An active retrotransposon family, BARE-1, comprises approximately 7% of the barley (Hordeum vulgare subsp. vulgare) genome. We have generated models for the secondary and tertiary structure of BARE-1 IN and demonstrate their similarity to structures for human immunodeficiency virus 1 and avian sarcoma virus INs. The IN core domains were compared for 80 clones from 28 Hordeum accessions representative of the diversity of the genus. Based on the structural model, variations in the predicted, aligned translations from these clones would have minimal structural and functional effects on the encoded enzymes. This indicates that Hordeum retrotransposon IN has been under purifying selection to maintain a structure typical of retroviral INs. These represent the first such analyses for plant INs.   相似文献   

14.

Background  

The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids.  相似文献   

15.
Within the unique Triplo-lethal region (Tpl) of the Drosophila melanogaster genome we have found a cluster of 20 genes encoding a novel family of proteins. This family is also present in the Anopheles gambiae genome and displays remarkable synteny and sequence conservation with the Drosophila cluster. The family is also present in the sequenced genome of D. pseudoobscura, and homologs have been found in Aedes aegypti mosquitoes and in four other insect orders, but it is not present in the sequenced genome of any noninsect species. Phylogenetic analysis suggests that the cluster evolved prior to the divergence of Drosophila and Anopheles (250 MYA) and has been highly conserved since. The ratio of synonymous to nonsynonymous substitutions and the high codon bias suggest that there has been selection on this family both for expression level and function. We hypothesize that this gene family is Tpl, name it the Osiris family, and consider possible functions. We also predict that this family of proteins, due to the unique dosage sensitivity and the lack of homologs in noninsect species, would be a good target for genetic engineering or novel insecticides.  相似文献   

16.
Han Y  Korban SS 《Genomics》2007,90(2):195-200
The apple, Malusxdomestica Borkh., belongs to the family Rosaceae and subfamily Maloideae and has a genome size of approximately 750 Mb. In this study, a novel family of transposable elements, designated Spring, has been identified in the apple genome. The four Spring elements, Spring-1 to Spring-4, share all the classic features of miniature inverted-repeat transposable elements (MITEs), including small size (approximately 148 bp), no coding potential, A/T richness, insertion bias toward noncoding regions, terminal inverted repeats (TIRs), target site duplications, and potential for forming secondary structures. Evidence of previous mobility of Spring-4 is demonstrated by sequence alignment of genes encoding 1-aminocyclopropane-1-carboxylic acid synthase from both apple and a related member of the Maloideae subfamily, pear. The Spring elements are flanked by either 8- or 9-bp direct repeats, and they differ significantly in size compared to other previously reported MITEs in plants. The TIRs of these Spring elements are not found in any other previously reported plant genes or transposons, except for apple. The possible role of Spring elements in the apple genome is discussed.  相似文献   

17.
Several computational methods based on stochastic context-free grammars have been developed for modeling and analyzing functional RNA sequences. These grammatical methods have succeeded in modeling typical secondary structures of RNA, and are used for structural alignment of RNA sequences. However, such stochastic models cannot sufficiently discriminate member sequences of an RNA family from nonmembers and hence detect noncoding RNA regions from genome sequences. A novel kernel function, stem kernel, for the discrimination and detection of functional RNA sequences using support vector machines (SVMs) is proposed. The stem kernel is a natural extension of the string kernel, specifically the all-subsequences kernel, and is tailored to measure the similarity of two RNA sequences from the viewpoint of secondary structures. The stem kernel examines all possible common base pairs and stem structures of arbitrary lengths, including pseudoknots between two RNA sequences, and calculates the inner product of common stem structure counts. An efficient algorithm is developed to calculate the stem kernels based on dynamic programming. The stem kernels are then applied to discriminate members of an RNA family from nonmembers using SVMs. The study indicates that the discrimination ability of the stem kernel is strong compared with conventional methods. Furthermore, the potential application of the stem kernel is demonstrated by the detection of remotely homologous RNA families in terms of secondary structures. This is because the string kernel is proven to work for the remote homology detection of protein sequences. These experimental results have convinced us to apply the stem kernel in order to find novel RNA families from genome sequences.  相似文献   

18.
We have isolated and characterized a family of interspersed repetitive elements which make up about 1% of the mouse genome. The elements represent a group of homologous but non-identical units about 400 bp in length. Individual members of the family show considerable divergence from one another. The spacial relationships between members of the family and a number of other identified mouse sequences including structural genes have been determined; these elements are found on the 5' as well as 3' sides of various genes at distances ranging from less than 1 to 7.5 kilobases (Kb). The sequences are present in the DNA of all species of Mus. Related sequences are present in the rat genome at a repetition frequency similar to that in the mouse genome. A partial sequence of one member of the family is presented.  相似文献   

19.
We have characterized from the legume plant Medicago a new family of miniature inverted-repeat transposable elements (MITE), called the Bigfoot transposable elements. Two of these insertion elements are present only in a single allele of two different M. sativa genes. Using a PCR strategy we have isolated 19 other Bigfoot elements from the M. sativa and M. truncatula genomes. They differ from the previously characterized MITEs by their sequence, a target site of 9 bp and a partially clustered genomic distribution. In addition, we show that they exhibit a significantly stable secondary structure. These elements may represent up to 0.1% of the genome of the outcrossing Medicago sativa but are present at a reduced copy number in the genome of the autogamous M. truncatula plant, revealing major differences in the genome organization of these two plants.  相似文献   

20.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号