首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypsin IV, a novel agonist of protease-activated receptors 2 and 4   总被引:11,自引:0,他引:11  
Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.  相似文献   

2.
Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.  相似文献   

3.
In airways Cl- secretion is activated and Na+ absorption is inhibited when P2Y2 receptors are stimulated by ATP or UTP. Both nucleotides are subject to degradation to ADP and UDP by ecto-nucleotidases. Here we show that these metabolites change electrolyte transport by stimulation of P2Y6 receptors in mouse trachea. Immunohistochemistry confirmed luminal and basolateral expression of P2Y6 receptors. In Ussing chamber experiments luminal ADP, UDP or the P2Y6 receptor agonist INS48823 induced both transient and persistent increase in short circuit currents (ISC). Activation of ISC was inhibited by the P2Y6 receptor blocker PPADS. The transient response was inhibited by DIDS, whereas the persistent ISC was inhibited by glibenclamide and by the protein kinase A (PKA) blocker H-89. Moreover, sustained activation of ISC by luminal UDP was inhibited by blocking basolateral K+ channels with 293B. Possible effects of diphosphates on P2Y1 or adenosine receptors were excluded by the inhibitors MRS2179 and 8-SPT, respectively. Inhibition of amiloride sensitive Na+ absorption was only seen after blocking basolateral K+ channels with 293B. In contrast, Cl- secretion activated by basolateral ADP or UDP was only transient and was blocked by the sk4 K+ channel blocker clotrimazole. In summary, activation of luminal P2Y6 receptors in the airways shifts electrolyte transport towards secretion by increasing intracellular Ca+ and activation of PKA.  相似文献   

4.
A cytoprotective role for protease-activated receptor-2 (PAR2) has been suggested in a number of systems including the airway, and to this end, we have studied the role that PARs play in the regulation of airway ion transport, using cultures of normal human bronchial epithelial cells. PAR2 activators, added to the basolateral membrane, caused a transient, Ca2+-dependent increase in short-circuit current (I(sc)), followed by a sustained inhibition of amiloride-sensitive I(sc). These phases corresponded with a transient increase in intracellular Ca2+ concentration and then a transient increase, followed by decrease, in basolateral K+ permeability. After PAR2 activation and the addition of amiloride, the forskolin-stimulated increase in I(sc) was also attenuated. By contrast, PAR2 activators added to the apical surface of the epithelia or PAR1 activators added to both the apical and basolateral surfaces were without effect. PAR2 may, therefore, play a role in the airway, regulating Na+ absorption and anion secretion, processes that are central to the control of airway surface liquid volume and composition.  相似文献   

5.
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.  相似文献   

6.
A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.  相似文献   

7.
Protease-activated receptors (PARs) mediate cellular responses to a subset of extracellular proteases, including blood coagulation factors and proteases produced by inflammatory cells. Cells in bone, cartilage and muscle exhibit cell type-specific expression patterns and functional responses for the different PARs. Activators of PAR-1 include thrombin, and activators of PAR-2 include trypsin and tryptase; PARs-3 and -4 are also receptors for thrombin. Thrombin stimulates PAR-1-mediated proliferative responses in osteoblasts, chondrocytes and myoblasts, and in developing muscle, PAR-1 activation by thrombin appears to mediate activity-dependent polyneuronal synapse reduction. In bone, activation of PAR-2 leads to inhibition of osteoblast-mediated osteoclast differentiation induced by hormones or cytokines, and in muscle, PAR-2 activation leads to stimulation of myoblast proliferation. Although there is some evidence for a role for PARs expressed by cells of the musculoskeletal system at specific stages of development, their major role appears to be in protecting the tissues from the destructive effects of inflammation and promoting regeneration. This review discusses the regulation of cell function in the musculoskeletal system by receptor-mediated responses to proteases. Expression patterns of PARs, the circumstances in which PAR activators are likely to be present, functional responses of PAR activation, and responses to thrombin for which receptors have not yet been identified are considered.  相似文献   

8.
Protease-activated receptors (PARs) mediate cellular responses to a variety of extracellular proteases. The four known PARs constitute a subgroup of the family of seven-transmembrane domain G protein-coupled receptors and activate intracellular signalling pathways typical for this family of receptors. Activation of PARs involves proteolytic cleavage of the extracellular domain, resulting in formation of a new N terminus, which acts as a tethered ligand. PAR-1, -3, and -4 are relatively selective for activation by thrombin whereas PAR-2 is activated by a variety of proteases, including trypsin and tryptase. Recent studies in mice genetically incapable of expressing specific PARs have defined roles for PAR-1 in vascular development, and for PAR-3 and -4 in platelet activation, which plays a fundamental role in blood coagulation. PAR-1 has also been implicated in a variety of other biological processes including inflammation, and brain and muscle development. Responses mediated by PAR-2 include contraction of intestinal smooth muscle, epithelium-dependent smooth muscle relaxation in the airways and vasculature, and potentiation of inflammatory responses. The area of PAR research is rapidly expanding our understanding of how cells communicate and control biological functions, in turn increasing our knowledge of disease processes and providing potential targets for therapeutic intervention.  相似文献   

9.
Proteases, like thrombin, trypsin, cathepsins, or tryptase, can signal to cells by cleaving in a specific manner, a family of G protein-coupled receptors, the protease-activated receptors (PARs). Proteases cleave the extracellular N-terminal domain of PARs to reveal tethered ligand domains that bind to and activate the receptors. Recent evidence has supported the involvement of PARs in inflammation and pain. Activation of PAR(1), PAR(2), and PAR(4) either by proteinases or by selective agonists causes inflammation inducing most of the cardinal signs of inflammation: swelling, redness, and pain. Recent studies suggest a crucial role for the different PARs in innate immune response. The role of PARs in the activation of pain pathways appears to be dual. Subinflammatory doses of PAR(2) agonists induce hyperalgesia and allodynia, and PAR(2) activation has been implicated in the generation of inflammatory hyperalgesia. In contrast, subinflammatory doses of PAR(1) or PAR(4) increase nociceptive threshold, inhibiting inflammatory hyperalgesia, thereby acting as analgesic mediators. PARs have to be considered as an additional subclass of G protein-coupled receptors that are active participants to inflammation and pain responses and that could constitute potential novel therapeutic targets.  相似文献   

10.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

11.
12.
13.
Proteinase-activated receptors 2 (PAR2) are expressed in kidney, but their function is mostly unknown. Since PAR2 control ion transport in several epithelia, we searched for an effect on sodium transport in the cortical thick ascending limb of Henle's loop, a nephron segment that avidly reabsorbs NaCl, and for its signaling. Activation of PAR2, by either trypsin or a specific agonist peptide, increased the maximal activity of Na,K-ATPase, its apparent affinity for sodium, the sodium permeability of the paracellular pathway, and the lumen-positive transepithelial voltage, featuring increased NaCl reabsorption. PAR2 activation induced calcium signaling and phosphorylation of ERK1,2. PAR2-induced stimulation of Na,K-ATPase Vmax was fully prevented by inhibition of phospholipase C, of changes in intracellular concentration of calcium, of classical protein kinases C, and of ERK1,2 phosphorylation. PAR2-induced increase in paracellular sodium permeability was mediated by the same signaling cascade. In contrast, increase in the apparent affinity of Na,K-ATPase for sodium, although dependent on phospholipase C, was independent of calcium signaling, was insensitive to inhibitors of classical protein kinases C and of ERK1,2 phosphorylation, but was fully prevented by the nonspecific protein kinase inhibitor staurosporine, as was the increase in transepithelial voltage. In conclusion, PAR2 increases sodium reabsorption in rat thick ascending limb of Henle's loop along both the transcellular and the paracellular pathway. PAR2 effects are mediated in part by a phospholipase C/protein kinase C/ERK1,2 cascade, which increases Na,K-ATPase maximal activity and the paracellular sodium permeability, and by a different phospholipase C-dependent, staurosporine-sensitive cascade that controls the sodium affinity of Na,K-ATPase.  相似文献   

14.
Heme prosthetic groups are vital for all living organisms, but they can also promote cellular injury by generating reactive oxygen species. Therefore, intestinal heme absorption and distribution should be carefully regulated. Although a human intestine brush-border heme receptor/transporter has been suggested, the mechanism by which heme crosses the apical membrane is unknown. After it enters the cell, heme is degraded by heme oxygenase-1 (HO-1), and iron is released. We hypothesized that heme transport is actively regulated in Caco-2 cells. Cells exposed to hemin from the basolateral side demonstrated a higher HO-1 induction than cells exposed to hemin from the apical surface. Hemin secretion was more rapid than absorption, and net secretion occurred against a concentration gradient. Treatment of the apical membrane with trypsin increased hemin absorption by threefold, but basolateral treatment with trypsin had no effect on hemin secretion. Neither apical nor basolateral trypsin changed the paracellular pathway. We conclude that heme is acquired and transported in both absorptive and secretory directions in polarized Caco-2 cells. Secretion is via an active metabolic/transport process. Trypsin applied to the apical surface increased hemin absorption, suggesting that protease activity can uncover a process for heme uptake that is otherwise quiescent. These processes may be involved in preventing iron overload in humans.  相似文献   

15.
Proteinase-activated receptor 2 (PAR2) is a G protein-coupled membrane receptor that is activated upon cleavage of its extracellular N-terminal domain by trypsin and related proteases. PAR2 is expressed in kidney collecting ducts, a main site of control of Na+ and K+ homeostasis, but its function remains unknown. We evaluated whether and how PAR2 might control electrolyte transport in collecting ducts, and thereby participate in the regulation of blood pressure and plasma K+ concentration. PAR2 is expressed at the basolateral border of principal and intercalated cells of the collecting duct where it inhibits K+ secretion and stimulates Na+ reabsorption, respectively. Invalidation of PAR2 gene impairs the ability of the kidney to control Na+ and K+ balance and promotes hypotension and hypokalemia in response to Na+ and K+ depletion, respectively. This study not only reveals a new role of proteases in the control of blood pressure and plasma potassium level, but it also identifies a second membrane receptor, after angiotensin 2 receptor, that differentially controls sodium reabsorption and potassium secretion in the late distal tubule. Conversely to angiotensin 2 receptor, PAR2 is involved in the regulation of sodium and potassium balance in the context of either stimulation or nonstimulation of the renin/angiotensin/aldosterone system. Therefore PAR2 appears not only as a new actor of the aldosterone paradox, but also as an aldosterone-independent modulator of blood pressure and plasma potassium.  相似文献   

16.
Hemostasis is a defense mechanism which protects the organism in the event of injury to stop bleeding. Recently, we established that all the known major mammalian hemostatic factors are conserved in early vertebrates. However, since their highly vascularized gills experience high blood pressure and are exposed to the environment, even very small injuries could be fatal to fish. Since trypsins are forerunners for coagulation proteases and are expressed by many extrapancreatic cells such as endothelial cells and epithelial cells, we hypothesized that trypsin or trypsin-like proteases from gill epithelial cells may protect these animals from gill bleeding following injuries. In this paper we identified the release of three different trypsins from fish gills into water under stress or injury, which have tenfold greater serine protease activity compared to bovine trypsin. We found that these trypsins activate the thrombocytes and protect the fish from gill bleeding. We found 27 protease-activated receptors (PARs) by analyzing zebrafish genome and classified them into five groups, based on tethering peptides, and two families, PAR1 and PAR2, based on homologies. We also found a canonical member of PAR2 family, PAR2-21A which is activated more readily by trypsin, and PAR2-21A tethering peptide stops gill bleeding just as trypsin. This finding provides evidence that trypsin cleaves a PAR2 member on thrombocyte surface. In conclusion, we believe that the gills are evolutionarily selected to produce trypsin to activate PAR2 on thrombocyte surface and protect the gills from bleeding. We also speculate that trypsin may also protect the fish from bleeding from other body injuries due to quick contact with the thrombocytes. Thus, this finding provides evidence for the role of trypsins in primary hemostasis in early vertebrates.  相似文献   

17.
Recent studies on frog skin acini have challenged the question whether Cl(-) secretion or Na(+) absorption in the airways is driven by luminal K(+) channels in series to a basolateral K(+) conductance. We examined the possible role of luminal K(+) channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl(-) secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+2)Cl(-)K(+) cotransporter azosemide. Similarly, the compound 293B, a blocker of basolateral KCNQ1/KCNE3 K(+) channels effectively blocked Cl(-) secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K(+) channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K(+) channels in mouse airways, using luminal 293B, clotrimazole and Ba(2+) or different K(+) channel toxins such as charybdotoxin, apamin and a-dendrotoxin. Thus, the present study demonstrates Cl(-) secretion in mouse airways, which depends on basolateral Na(+2)Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl(-) channels. Cl(-) secretion is maintained by the activity of basolateral K(+) channels, while no clear evidence was found for the presence of a luminal K(+) conductance.  相似文献   

18.
Protease-activated receptors (PARs) are G-protein-coupled receptors which initiate inflammatory responses when activated by specific serine proteases. This study was conducted to examine whether human conjunctival epithelial cells (HCECs) express functionally active PAR1 and PAR2 using Chang conjunctival epithelial cells as in vitro model. We performed RT-PCR and immunofluorescence analyses to determine the expression of PAR1 and PAR2, and monitored the production of IL-6 after activating HCECs with PAR1 activating agents (thrombin or TFLLRN) or PAR2 activating agents (tryptase, trypsin, or SLIGKV). The results show that HCECs constitutively express PAR1 and PAR2 mRNA and proteins, and produce significant amounts of IL-6 when incubated with specific PAR-activating enzymes or agonist peptides. Thrombin- and tryptase-induced HCEC activation was blocked by PAR1 and PAR2 neutralizing antibodies, respectively, and by specific enzyme inhibitors. The constitutive expression of PAR1 and PAR2, and their activation by thrombin and tryptase, respectively, may have important implications in ocular inflammation.  相似文献   

19.
The multidrug resistance-associated protein (MRP) that is involved in drug resistance and the export of glutathione-conjugated substrates may not have the same epithelial cell membrane distribution as the P-glycoprotein encoded by the MDR gene. Because intestinal and kidney epithelial cells are polarized cells endowed distinct secreting and absorptive ion and protein transport capacities, we investigated the tissue and cell distribution of MRP in adult mouse small intestine, colon, and kidney by immunohistochemistry. Western blot analyses revealed the 190-kD MRP protein in these tissues. MRP was found in the basolateral membranes of intestinal crypt cells, mainly Paneth cells, but not in differentiated enterocytes. All the cells lining the crypt-villous axis of the colon wall contained MRP. MRP was found in the glomeruli, ascending limb cells, and basolateral membranes of the distal and collecting tubule cells of the kidney but not in proximal tubule cells. Cultured mouse intestinal m-ICcl2 cells and renal distal mpkDCT cells that have retained the features typical of intestinal crypt and renal distal epithelial cells, respectively, also possess MRP in their basolateral membranes. The patterns of subcellular and cellular distribution indicate that MRP may have a specific role in the basolateral transport of endogenous compounds in Paneth, renal distal, and collecting tubule cells.  相似文献   

20.
Adequate fluid secretion from airway mucosa is essential for maintaining mucociliary clearance, and fluid hypersecretion is a prominent feature of inflammatory airway diseases such as allergic rhinitis. House dust mite extract (HDM) has been reported to activate protease‐activated receptors (PARs), which play various roles in airway epithelia. However, the role of HDM in regulating ion transporters and fluid secretion has not been investigated. We examined the effect of HDM on ion transport in human primary nasal epithelial cells. The Ca2+‐sensitive dye Fura2‐AM was used to determine intracellular Ca2+ concentration ([Ca2+]i) by means of spectrofluorometry in human normal nasal epithelial cells (NHNE). Short‐circuit current (Isc) was measured using Ussing chambers. Fluid secretion from porcine airway mucosa was observed by optical measurement. HDM extract (10 µg/Ml) effectively cleaved the PAR‐2 peptide and induced an increase of [Ca2+]i that was abolished by desensitization with trypsin, but not with thrombin. Apical application of HDM‐induced Isc sensitive to both a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and a Ca2+‐activated Cl? channel (CaCC) inhibitor. HDM extract also stimulated fluid secretion from porcine airway mucosa. HDM extract activated PAR‐2 and apical Cl? secretion via CaCC and CFTR, and HDM‐induced fluid secretion in porcine airway mucosa. Our results suggest a role for PAR‐2 in mucociliary clearance and fluid hypersecretion of airway mucosa in response to air‐borne allergens such as HDM. J. Cell. Biochem. 109: 1254–1263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号