首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
磁性细菌胞内可以产生磁性颗粒,因此具有趋磁性,基于这种特性,利用磁分离的原理,本研究开发了一种磁性细菌分离仪,提供了一种分离磁性细菌的新方法。以氧化亚铁硫杆菌为例,使用磁性细菌分离仪进行分离,可以得到强磁菌和弱磁菌。利用透射电镜观察,强磁菌胞内磁性颗粒明显多于弱磁菌;半固体平板磁泳实验也表明强磁菌趋磁性明显强于弱磁菌。各项实验结果表明磁性细菌分离仪可以有效地分离磁性细菌,这是一种分离磁性细菌的新方法,将促进磁性细菌分离培养的研究。  相似文献   

2.
李俊  方志财  齐鲁  胡立江 《生物磁学》2013,(26):5055-5058,5049
基于对生物磁学效应的研究,磁疗成为替代医学和补充医学的一种有效的治疗方法,本文通过对现有静磁场(恒定磁场)保健寝具磁标准和磁剂量的评述,首次提出磁保健寝具三围空间磁场的概念,指出采用磁感应强度在空间的强度分布作为磁保健剂量标准。论述了三围空间磁场具体磁参数的评价,包括所用磁源的表面磁感应强度,寝具织物表面磁场的穿透力、梯度、有效磁通量和空间能量等磁场分布的描述性指标。指出了静磁场保健寝具磁参数的合理的评价参量:为确保织物表面磁感应强度在目前认知的400~1100Gs有效安全剂量内,依据使用时的织物厚度,磁保健寝具选用的磁体表磁应在1000-3000Gs左右.且磁场的梯度不宜过大,磁场的平均穿透力在25-30cm左右,以确保空间磁场能量的有效作用于人体深处。  相似文献   

3.
Magnetotactic bacteria produce nanometer‐size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB‐1, cultures inoculated with either magnetic or non‐magnetic pre‐cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise Cmag values of the cultures, which means that the percentage of magnetosome‐containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up‐regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non‐magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB‐1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome. Bioelectromagnetics 30:313–321, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
磁性纳米粒子,是一类智能型的纳米材料,因其特有的性质,被广泛应用于生物医学领域,在肝癌的治疗方面也有大量的实验性研究和成果。研究和探索磁性纳米粒子治疗肝癌的新方法和途径,有着很大的现实意义。本文就磁性纳米粒子作用于肝癌细胞的生物学效应的研究现状和进展进行总结整理,从三个方面进行了综述:磁性纳米粒子直接作用于肝癌细胞,探索磁性纳米粒子的生物相容性、在肝癌细胞的分布方式以及磁性纳米粒子本身对肝癌细胞的生物学效应的影响;磁性纳米粒子协同外加磁场(稳恒磁场、极低频交变磁场和高频交变磁场)作用于肝癌细胞;磁性纳米粒子外加修饰(磁性白蛋白纳米颗粒、纳米磁流体、磁性脂质体等),作为药物载体作用于肝癌细胞。  相似文献   

5.
目的:利用恒定均匀磁场研究了不同磁处理方式和磁感应强度对小球藻生长的影响,探索磁处理技术应用于微藻培养的可能。方法:用t检验考察静止磁处理、循环磁处理和磁处理水三种不同的磁处理方式对小球藻生长的影响。结果:静止磁处理和循环磁处理分别在5.15mT和10.35mT范围促进小球藻生长,并且随磁感应强度增强分别从45mT与200mT开始表现出显著抑制生长作用.相同的磁感应强度下静止磁处理比循环磁处理的影响显著。未发现磁处理水对小球藻的生长有显著影响。结论:不同的磁处理方式对小球藻生长有不同的刺激与抑制的强度闽值;0.8T和1.2T磁感应强度处理下比生长速率下降的差别并不明显,说明磁处理的影响在此强度范围趋于稳定;磁处理水无显著影响说明磁场直接对小球藻细胞产生影响。  相似文献   

6.
BACKGROUND: Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. METHODS: A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (gamma-Fe2O3, ~7 nm) have been used to produce the magnetic gel. RESULTS: The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. CONCLUSION: Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles.  相似文献   

7.
伴随科技的发展,磁场与人类的关系越来越密切。然而目前人们对磁场如何影响机体结构和(或)功能还未达成共识,其中磁场在致癌或抑癌方面的作用受到人们的广泛关注。但是关于磁场对机体的作用的研究还处在比较初始的阶段,并且目前的研究结果仍然存在许多的不同与矛盾。由于研究人员对磁场强度、照磁量的确定方法不一,使实验结果的可比性下降。本文从目前电磁场,静磁场,以及磁场作用机制等方面就磁场与机体作用最新的研究结果进行综述,探讨磁场在癌症发生发展过程中的作用,寻找治疗癌症的新思路。  相似文献   

8.
A study is made of the boundary regions of magnetic structures formed either near the last closed flux surface of the main magnetic configuration in a stellarator or near magnetic islands in more general toroidal confinement systems with topologically equivalent sheared magnetic configurations. With a relatively simple approximate analytic model based on the perturbation method, it was possible not only to reproduce earlier results on the destruction of hyperbolic magnetic axes in the three-dimensional toroidal magnetic configurations under consideration but also to obtain some new results, in particular, to analytically estimate the sizes of the separatrix regions of stochastic magnetic fields that arise in the main stellarator configuration and also near the inner chains of magnetic islands in any magnetic configuration under consideration. It is notable that the boundary region of the main stellarator magnetic configuration is a multiply connected structure, the outer part of which is largely governed by the current distribution in the magnetic system creating this configuration.  相似文献   

9.
In this experiment, we evaluated the effects of strong static magnetic fields (SMF) on the orientation of myotubes formed from a mouse-derived myoblast cell line, C2C12. Myogenic differentiation of C2C12 cells was conducted under exposure to SMF at a magnetic flux density of 0-10 T and a magnetic gradient of 0-41.7 T/m. Exposure to SMF at 10 T led to significant formation of oriented myotubes. Under the high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient, myotube orientation increased as the myogenic differentiation period increased. At the 3 T exposure position, where there was a moderate magnetic flux density and moderate magnetic field gradient, myotube orientation was not observed. We demonstrated that SMF induced the formation of oriented myotubes depending on the magnetic flux density, and that a high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient induced the formation of oriented myotubes 6 days after myogenic differentiation. We did not detect any effect of the static magnetic fields on myogenic differentiation or cell number. To the best of our knowledge, this is the first report to demonstrate that myotubes orient to each other under a SMF without affecting the cell number and myogenic differentiation.  相似文献   

10.
Recent multispacecraft observations in the Earth’s magnetosphere have revealed an abundance of magnetic holes—localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction.  相似文献   

11.
相比于超顺磁性纳米颗粒,具有涡旋磁畴的磁性纳米颗粒,由于独特的磁化闭合分布、较大的粒径尺寸及外加磁场中的磁化翻转特性,使得其兼具弱的颗粒间磁相互作用和更优异的磁学性能,在生物医学领域展现出了更好的应用优势和潜力.本综述结合近年来国内外对涡旋磁畴的研究及涡旋磁纳米颗粒在生物医学领域的报道,提出了一类新型的生物医用涡旋磁溶胶体系,并以涡旋磁氧化铁纳米盘和纳米环为例,介绍了涡旋磁纳米颗粒的化学合成,并着重论述了这类具有独特涡旋畴结构的纳米颗粒在磁共振成像、抗肿瘤治疗等生物医学应用上的最新研究进展.  相似文献   

12.
Nanotechnology holds a promising potential for developing biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging (MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.  相似文献   

13.
磁性纳米颗粒具有独特的磁学性质,即在外加交变磁场下因产生磁滞释放热量,使其在生物医学领域,特别是肿瘤磁热疗,获得了广泛应用.到目前为止,磁性纳米颗粒介导的磁热疗成为一种治疗癌症的有效手段,已进入临床三期实验.因此,针对磁性纳米颗粒本身,优化设计尺寸、形貌、组分和表面修饰来提高其磁热性能,进而减小临床应用中的颗粒浓度来最小化毒副作用的研究,对肿瘤治疗及生物医药研究具有十分重要的意义.本综述详述如何优化调制磁性纳米颗粒以提高其磁热性能,为高效、低毒的磁性纳米颗粒的设计提供了指导性的研究方向.  相似文献   

14.
A local analysis of the magnetic field near an equilibrium magnetic surface shows that there is generally no relationship between the magnetic field strength and the shape of the surface. However, the relationship exists under additional requirements such as the absence of the toroidal current, symmetry conservation, and the conservation of the magnetic field strength distribution on the nearest surface. An equilibrium magnetic surface can be calculated by specifying three functions of two angular variables—the magnetic field strength, the periodic component of the magnetic potential, and the mean curvature of the surface.  相似文献   

15.
Multipolar Galatea magnetic trap simulation model was established with the finite element simulation software COMSOL Multiphysics. Analyses about the magnetic section configuration show that better magnetic configuration should make more plasma stay in the weak magnetic field rather than the annular magnetic shell field. Then an optimization model was established with axial electromagnetic force, weak magnetic field area and average magnetic mirror ratio as the optimization goals and with the currents of myxines as design variables. Select appropriate weight coefficients and get optimization results by applying genetic algorithm. Results show that the superiority of the target value of typical application parameters, including the average magnetic mirror can reduce more than 5%, the weak magnetic field area can increase at least 65%, at the same time, axial electromagnetic force acting on the outer myxines can be reduced to less than 50 N. Finally, the results were proved by COMSOL Multiphysics and the results proved the optimized magnetic trap configuration with more plasma in the weak magnetic field can reduce the plasma diffusion velocity and is more conducive for the constraint of plasma.  相似文献   

16.
Apparent biological effects of strong magnetic fields were observed in the hatching behavior of fresh mosquito eggs in the center of 9.4 and 14.1 T magnets. In the first experiment performed at 20 +/- 1 degrees C, the hatching was delayed 32 h by a 9.4 T magnetic field and 71 h by a 14.1 T magnetic field. In the second experiment performed at 22 +/- 1 degrees C, the hatching was delayed 14 h by a 9.4 T magnetic field and 27 h by a 14.1 T magnetic field. In the magnetic field range of this study, the hatching delay increases nonlinearly with the intensity of the magnetic field. The experimental results also suggest that the biological effects of magnetic fields could be reversible or partially reversible to some extent.  相似文献   

17.
For developing a magnetic bioassay system, an investigation to determine the presence of a specific biomolecular interaction between biotin and streptavidin was done using magnetic nanoparticles and a silicon substrate with a self-assembled monolayer. Streptavidin was immobilized on the magnetic particles, and biotin was attached to the monolayer-modified substrate. The reaction of streptavidin-modified magnetic particles on the biotin-modified substrate was clearly observed under an optical microscope. The magnetic signals from the particles were detected using a magnetic force microscope. The results of this study demonstrate that the combination of a monolayer-modified substrate with biomolecule-modified magnetic particles is useful for detecting biomolecular interactions in medical and diagnostic analyses.  相似文献   

18.
磁性纳米颗粒作为载体在基因转染中的研究进展   总被引:1,自引:0,他引:1  
磁性纳米颗粒具有很强的结合、浓缩与保护DNA的作用,具有超顺磁性、较高的安全性和低的免疫原性,可以结合大片段DNA,在外加磁场的作用下可实现安全、高效的基因靶向性运输,提高外源基因的转染效率。由于磁性纳米颗粒的独特性质,使得其作为非病毒载体在基因治疗中的应用进展迅速。我们简要介绍磁性纳米材料的特点、种类及结构,磁性纳米基因载体的特点,以及磁性纳米颗粒作为载体在基因转染中的应用情况。  相似文献   

19.
目的:研究旋转恒定磁场与凋亡诱导剂肿瘤坏死因子和放线菌酮的协同作用。方法:设置暴磁组和非暴磁组,用T检验的方法比较暴磁组和非暴磁组细胞凋亡的差别。结果:在其它条件相同的情况下,暴磁处理促进了由肿瘤坏死因子和放线菌酮诱导的Hela细胞的凋亡,但是单独暴磁处理或者暴磁处理与肿瘤坏事因子和放线菌酮其中之一共同处理并没有对细胞的凋亡产生显著的影响。结论:旋转恒定磁场能够与肿瘤坏死因子和放线菌酮产生协同作用。  相似文献   

20.
The possibility is demonstrated of finding vacuum equilibrium magnetic configurations with an exactly pseudosymmetric nonparaxial boundary magnetic surface in the vicinity of which the pseudosymmetry condition is satisfied approximately. Equations are derived for calculating the boundary surface from a prescribed particular dependence of the magnetic field strength in special magnetic flux coordinates. In calculations, magnetic coordinates serve as ordinary angular coordinates, while their “magnetic” character is specified by additional integral conditions. As an example, a “tubular” orthogonal magnetic surface is calculated analytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号