首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effect of clustering behaviour on metabolism, body temperature, thermal conductance and evaporative water loss was investigated in speckled mousebirds at temperatures between 5 and 36°C. Within the thermal neutral zone (approximately 30–35 °C) basal metabolic rate of clusters of two birds (32.5 J·g-1·h-1) and four birds (28.5 J·g-1·h-1) was significantly lower by about 11% and 22%, respectively, than that of individuals (36.4 J·g-1·h-1). Similarly, below the lower critical temperature, the metabolism of clusters of two and four birds was about 14% and 31% lower, respectively, than for individual birds as a result of significantly lower total thermal conductance in clustered birds. Body temperature ranged from about 36 to 41°C and was positively correlated with ambient temperature in both individuals and clusters, but was less variable in clusters. Total evaporative water loss was similar in individuals and clusters and averaged 5–6% of body weight per day below 30°C in individuals and below 25°C in clusters. Above these temperatures total evaporative water loss increased and mousebirds could dissipate between 80 and 90% of their metabolic heat production at ambient temperatures between 36 and 39°C. Mousebirds not only clustered to sleep between sunset and sunrise but were also observed to cluster during the day, even at high ambient temperature. Whereas clustering at night and during cold, wet weather serves a thermoregulatory function, in that it allows the brrds to maintain body temperature at a reduced metabolic cost, clustering during the day is probably related to maintenance of social bonds within the flock.Abbreviations BMR basal metabolic rate - bw body weight - C totab total thermal conductance - EWI evaporative water loss - M metabolism - RH relative humidity - T a ambient temperature - T b body temperature - T ch chamber temperature - T cl cluster temperature - TEWL total evaporative water loss - LCT lower critical temperature - TNZ thermal neutral zone  相似文献   

2.
Summary The Diamond Dove, Geopelia cuneata, is the world's second smallest (ca. 35 g) species of the columbid order. The Diamond Dove is endemic in the arid and semiarid Mulga and Spinifex regions of Central and Western Australia. It regularly encounters ambient temperatures (T a ) in its habitat above +40° C, especially when foraging for seeds on bare ground cover, and may be found at up to 40 km from water. This entails extreme thermal stress, with evaporative cooling constrained by limited water supply. Energy metabolism (M), respiration, body temperature (T a ) and water budget were examined with regard to physiological adaptations to these extreme environmental conditions. The zone of thermal neutrality (TNZ) extended from +34° C to at least +45° C. Basal metabolic rate (BMR) was 34.10±4.19 J g–1h–1, corresponding to the values predicted for a typical columbid bird. Thermal conductance (C) was higher than predicted. Geopelia cuneata showed the typical breathing pattern of doves, a combination of normal breathing at a stable frequency (ca. 60 min–1) at low T a and panting followed by gular flutter (up to 960 min–1) at high T a . At T a > +36° C, T a increased to considerably higher levels without increasing metabolic rate, i.e. Q10=1. This enabled the doves not only to store heat but also to save the amout of water that would have been required for evaporative cooling if T a had remained constant. The birds were able to dissipate more than 100% of the metabolic heat by evaporation at T a +44° C. This was achieved by gular flutter (an extremely effective mechanism for evaporation), and also by a low metabolic rate due to the low Q10 value for metabolism during increased T b . At lower T a , Geopelia cuneata predominantly relied on non-evaporative mechanisms during heat stress, to save water. Total evaporative water loss over the whole T a range was 19–33% lower than expected. In this respect, their small body size proved to be an important advantage for successful survival in hot and arid environments.Abbreviations and units Body Mass W (g) - Ambient Temperature T a (°C) - Body Temperature T b (°C) - Thermoneutral Zone (TNZ) - Metabolism M (J g–1 h–1) - Thermal Conductance C - wet Thermal Conductance C wet (J g–1 h–1 °C–1) - Evaporative Water Loss EWL (mg H2O g–1 h–1) - Evaporative Heat Loss EHL (J g–1 h–1) - Breathing Frequency F (breaths min–1) - Tidal Volume V t (ml breath–1) - Standard Temperature Pressure Dry STPD - Body Temperature Pressure Saturated BTPS - Respiratory Quotient RQ - n.s. not significant (P>0.05) - n number of experiments  相似文献   

3.
Summary Tibicen chiricahua and T. duryi are cicada species that are active as adults early each summer in central New Mexico, and are often syntopic in pinyon-juniper woodlands. Both species regulate thoracic temperature (Tth) within fairly narrow limits by utilizing behavioral mechanisms and evaporative cooling. However, syntopic populations of these two species were found to regulate at different Tth despite having synchronous annual and daily activity periods; overall mean Tth of T. chiricahua was 3.1°C higher than it was for T. duryi. Interspecific differences in evaporative cooling abilities and rates of passive heat exchange could not account for this difference in Tth. Part of the difference in Tth resulted from the fact that individuals of the two species were active in thermally distinct microhabitats. Within each species, mean Tth varied among behavior categories, and differences in how the two species allocated their time between activities also contributed to the interspecific difference in Tth. Though T. duryi is restricted to pinyon-juniper habitats such as the one in this study, T. chiricahua is also found in warmer habitats. The difference in Tth in the syntopic populations probably reflects interspecific differences in thermal preferences and thermal optima that are adaptive over their respective habitat ranges. The degree of dependence of Tth on ambient temperature (Tam) varied between activities within both species, with the least dependence exhibited during singing. Singing involves intense activity of tymbal muscles, which apparently can only function effectively over a relatively narrow range of temperature.  相似文献   

4.
Eight water monitor lizards, Varanus s. salvator, were captured; four individuals from an oil palm estate on the Malayan peninsula, and four from fresh water-deficient Tulai island 65 km off-shore in the South China Sea. They were fitted with a radio transmitter attached to a thermistor which was inserted into the cloaca of the animals and released. The heating rate during basking was measured as 0.117 and 0.118 °C·min-1 while the daily cloacal temperature fluctuated between 29.5–37.3 °C. Cloacal temperature was measured on other individuals caught at random times during the day, which revealed a considerable daily and individual variation. The average cloacal temperature during activity was 30.4 °C. The peak activity appeared when body temperature was 31 °C. Thermoregulation by behavioural means included cooling in water and reducing heat loss at night by sleeping in burrows. The cooling rate for two individuals when submerged in 29 °C water was 0.308 and 0.340 °C·min-1. There appeared to be a strong correlation between ambient temperature and cloacal temperature.Abbreviations bw body weight - T a ambient temperature - T a body temperature - T c cloacal temperature - TOP Timor Oil Palm Estate - TUL Tulai Island  相似文献   

5.
Metabolic rate and evaporative water loss (EWL) were measured for a small, arid-zone marsupial, the stripe-faced dunnart (Sminthopsis macroura), when normothermic and torpid. Metabolic rate increased linearly with decreasing ambient temperature (Ta) for normothermic dunnarts, and calculated metabolic water production (MWP) ranged from 0.85±0.05 (Ta=30°C) to 3.13±0.22 mg H2O g–1 h–1 (Ta=11°C). Torpor at Ta=11 and 16°C reduced MWP to 24–36% of normothermic values. EWL increased with decreasing Ta, and ranged from 1.81±0.37 (Ta=30°C) to 5.26±0.86 mg H2O g–1 h–1 (Ta=11°C). Torpor significantly reduced absolute EWL to 23.5–42.3% of normothermic values, resulting in absolute water savings of 50–55 mg H2O h–1. The relative water economy (EWL/MWP) of the dunnarts was unfavourable, remaining >1 at all Ta investigated, and did not improve with torpor. Thus torpor in stripe-faced dunnarts results in absolute, but not relative, water savings.  相似文献   

6.
We conducted a 3-year field and laboratory study of winter biology in hatchlings of the northern map turtle (Graptemys geographica). At our study area in northern Indiana, hatchlings routinely overwintered in their natal nests, emerging after the weather warmed in spring. Winter survival was excellent despite the fact that hatchlings were exposed frequently to subfreezing temperatures (to –5.4 °C). In the laboratory, cold-acclimated hatchlings exhibited low rates of evaporative water loss (mean=2.0 mg g–1 day–1), which would enable them to conserve body water during winter. Laboratory-reared hatchlings were intolerant of freezing at –2.5 °C for 24 h, conditions that are readily survived by freeze-tolerant species of turtles. Winter survival of hatchling G. geographica probably depended on their extensive capacity for supercooling (to –14.8 °C) and their well-developed resistance to inoculative freezing, which may occur when hatchlings contact ice and ice-nucleating agents present in nesting soil. Supercooled hatchlings survived a brief exposure to –8 °C. Others, held at –6 °C for 5 days, maintained ATP concentrations at control levels, although they did accumulate lactate and glucose, probably in response to tissue hypoxia. Therefore, anoxia tolerance, as evidenced by the viability of hatchlings exposed to N2 gas for 8 days, may promote survival during exposure to subfreezing temperatures.Abbreviations EWL evaporative water loss - FPeq equilibrium freezing point - INA ice-nucleating agents - Tc temperature of crystallizationCommunicated by L.C.-H. Wang  相似文献   

7.
Cicadas prevent body temperature from exceeding tolerable levels by a combination of behavioral responses and sweating. Sweating is activated when body temperature reaches a critical set-point temperature. We investigated control of sweating in the cicada, Tibicen dealbatus, by chemically manipulating biosynthesis of prostaglandins and other eicosanoids. Injecting prostaglandins in amounts equal to those that induce behavioral fever in scorpions and crustaceans resulted in only a small increase in set-point temperature. Blocking prostaglandin biosynthesis with cyclo-oxygenase inhibitors such as aspirin produced significant changes in set-point temperature, confirming that prostaglandins are involved in control of sweating. However, the effect of cyclo-oxygenase inhibitors was not the opposite of the effect of prostaglandins. Instead, the effect of cyclo-oxygenase inhibitors depended strongly on the value of setpoint temperature prior to treatment. Results of biochemical manipulations of other steps in eicosanoid biosynthetic pathways corroborated the results of cyclo-oxygenase inhibition and indicated that eicosanoids other than prostaglandins may be involved in control of body temperature in normothermic T. dealbatus. The effect of cyclo-oxygenase inhibitors on a given set-point temperature depended on the ambient temperature experienced by cicadas during the experiment. Surprisingly, cicadas exposed to ambient temperatures 40°C delayed activation of sweating until body temperature exceeded values normally recorded from T. dealbatus in the field. Control of body temperature in normothermic cicadas is thus complex, involving inputs from body temperature sensors, ambient temperature sensors, and at least two cyclo-oxygenase-dependent regulatory pathways.Abbreviations PUFA polyunsatured fatty acid(s) - T a ambient temperature - T b body temperature - T set set-point of body temperature for activation of sweating  相似文献   

8.
Ventilation was studied in the emu, a large flightless bird of mass 40kg, within the range of ambient temperatures from-5 to 45°C. Data for the emu and 21 other species were used to calculate allometric relationships for resting ventilatory parameters in birds (breath frequency=13.5 mass-0.314; tidal volume=20.7 mass1.0). At low ambient temperatures the ventilatory system must accommodate the increased metabolic demand for oxygen. In the emu this was achieved by a combination of increased tidal volume and increased oxygen extraction. Data from emus sitting and standing at-5°C, when metabolism is 1.5x and 2.6x basal metabolic rate, respectively, indicate that at least in the emu an increase in oxygen extraction can be stimulated by low temperature independent of oxygen demand. At higher ambient temperatures ventilation was increased to facilitate respiratory water loss. The emu achieved this by increased respiratory frequency. At moderate heat loads (30–35°C) tidal volume fell. This is usually interpreted as a mechanism whereby respiratory water loss can be increased without increasing parabronchial ventilation. At 45°C tidal volume increased; however, past studies have shown that CO2 washout is minimal under these conditions. The mechanism whereby this is possible is discussed.Abbreviations BMR basal metabolic rate - BTPS body temperature, ambient pressure, saturated - EO 2 oxygen extraction - EWL evaporative water loss - f R ventilation frequency - RH relative humidity - RHL respiratory heat loss - SEM standard error of the mean - SNK student-Newman-Keuls multiple range test - STPD standard temperature and pressure, dry - T a ambient temperatures(s) - T b body temperature(s) - T ex expired air temperature(s) - T rh chamber excurrent air temperature - V J ventilation - VO2 oxygen consumption - V T tidal volume - V/Q air ventilation to blood perfusion ratio  相似文献   

9.
Summary Yellow-bellied marmots characteristically live in montane-mesic environments, but in several areas in western North America, this species extended its range into lowland-xeric habitats. Body mass was significantly smaller in the lowland-xeric population from eastern Washington at 393 m than in the montane-mesic population from western Colorado at 2900 m. Oxygen consumption of marmots from montane-mesic and lowland-xeric environments was signiflcantly affected by ambient temperature (TA) water regimen, population, and a population x water regimen x temperature interaction. Lowland-xeric animals had a higher metabolic rate at low TAs, but a lower metabolic rate at higher TAs than the montane-mesic aminals. Oxygen consumption was lower on a restricted-water regimen than on ad libitum water in both populations. Coefficients relating oxygen consumption to body mass were affected by TA, water regimen, and population. These intraspecific coefficients are larger than the interspecific coefficients for all mammals. Body temperature (TB) was affected significantly by TA, water regimen, and population. TA body mass, and a population x water regimen interaction significantly affected conductance. Conductance generally was higher in the lowland-xeric than in the montane-mesic marmots. Both populations increased conductance at high TA, but the lowland-xeric population dissipated a much higher proportion of the heat by evaporative water loss (EWL) than did the montane-mesic population. Metabolic water production exceeded or equaled EWL at 5–20°C. Smaller body size, reduced metabolism at high TA, and increased EWL at high TA characterized the lowland-xeric population.Metabolic rates of yellow-bellied marmots were higher than predicted from body size during the reproductive season but decreased to 67% of that predicted from the Kleiber curve by late summer. Marmots minimize thermoregulatory costs by concentrating activity at times when the microclimate is favorable, by tolerating hyperthermia at high TA in the field, and by having a conductance lower than that predicted from body size.Abbreviations DHC dry-heat conductance - EHL evaporative heat loss - EWL evaporative water loss - HP heat produced - T A ambient temperature - T n body temperature - M body mass  相似文献   

10.
A comparison of the thermoregulation of water foraging wasps (Vespula vulgaris, Polistes dominulus) under special consideration of ambient temperature and solar radiation was conducted. The body surface temperature of living and dead wasps was measured by infrared thermography under natural conditions in their environment without disturbing the insects’ behaviour. The body temperature of both of them was positively correlated with Ta and solar radiation. At moderate Ta (22–28 °C) the regression lines revealed mean thorax temperatures (Tth) of 35.5–37.5 °C in Vespula, and of 28.6–33.7 °C in Polistes. At high Ta (30–39 °C) Tth was 37.2–40.6 °C in Vespula and 37.0–40.8 °C in Polistes. The thorax temperature excess (TthTa) increased at moderate Ta by 1.9 °C (Vespula) and 4.4 °C (Polistes) per kW−1 m−2. At high Ta it increased by 4.0 °C per kW−1 m−2 in both wasps. A comparison of the living water foraging Vespula and Polistes with dead wasps revealed a great difference in their thermoregulatory behaviour. At moderate Ta (22–28 °C) Vespula exhibited distinct endothermy in contrast to Polistes, which showed only a weak endothermic activity. At high Ta (30–39 °C) Vespula reduced their active heat production, and Polistes were always ectothermic. Both species exhibited an increasing cooling effort with increasing insolation and ambient temperature.  相似文献   

11.
The emu is a large, flightless bird native to Australia. Its habitats range from the high snow country to the arid interior of the continent. Our experiments show that the emu maintains a constant body temperature within the ambient temperature range-5 to 45°C. The males regulate their body temperature about 0.5°C lower than the females. With falling ambient temperature the emu regulates its body temperature initially by reducing conductance and then by increasing heat production. At-5°C the cost of maintaining thermal balance is 2.6 times basal metabolic rate. By sitting down and reducing heat loss from the legs the cost of homeothermy at-5°C is reduced to 1.5 times basal metabolic rate. At high ambient temperatures the emu utilises cutaneous evaporative water loss in addition to panting. At 45°C evaporation is equal to 160% of heat production. Panting accounts for 70% of total evaporation at 45°C. The cost of utilising cutaneous evaporation for the other 30% appears to be an increase in dry conductance.Abbreviations A r Effective radiating surface area - BMR basal metabolic rate - C dry dry conductance - CEWL cutaneous evaporative water loss - EHL evaporative heat loss - EWL evaporative water loss - FECO2 fractional concentration of CO2 in excurrent air - FFH2O water content of chamber excurrent air - FEO2 fractional concentration of O2 in chamber excurrent air - FICO2 fractional concentration of CO2 in incurrent air - FIO2 fractional concentration of O2 in chamber incurrent air - MHP metabolic heat production - MR metabolic rate - REWL respiratory evaporative water loss - RH relative humidity - RQ respiratory quotient ; - SA surface area - SEM standard error of the mean - SNK Student-Newman-Keuls multiple range test - STPD standard temperature and pressure dry - T a ambient temperature(s) - T b body temperature(s) - T e surface temperature(s) - flow rate of air into the chamber - carbon dioxide production - oxygen consumption - vapour pressure of water  相似文献   

12.
The energetic adaptations of non-breeding Tengmalm's owls (Aegolius funereus) to temperature and fasting were studied during the birds' autumnal irruptions in western Finland. Allometric analysis (including literature data and two larger owl species measured in this study) indicates that the basal metabolic rate of owls is below the mean level of non-passerine birds. However, the basal metabolic rate of the 130-g Tengmalm's owl (1.13 W) is higher than in other owls of similar size. This is probably related to its northern distribution and nomadic life history. Relative to its size, Tengmalm's owl has excellent cold resistance due to effective insulation (lower critical temperature +10°C, minimum conductance 0.19 mW·cm-2·°C-1). Radiotelemetric measurements of body temperature showed that the level of body temperature is lower than for birds in general (39.4°C at zero activity) and that the amplitude of the diurnal cycle is also low (0.2–0.6°C). In contrast to many other small birds, Tengmalm's owls do not enter hypothermia during a 5-day fast at thermoneutrality or in cold. Moreover, while the metabolic rate per bird shows the expected mass-dependent decrease, the mass-specific rate decreases only slightly during the fast. In line with this, there was no decrease in the plasma triiodothyronine concentration during the fast in the owl, whereas a dramtic drop was observed in the pigeon and Japanese quail that were used as a reference. Despite this, the owl has an excellent capacity for fasting because of its ability to accumulate extensive fat depots and its low overall metabolic rate. Fasting reduced evaporative water loss to 50% of that in the fed state. Calculations show that the oxygen consumption observed in fasting birds would involve a production of metabolic water barely sufficient to compensate for evaporative water loss. The threat of dehydration may thus set a limit to the decrease in metabolic rate in fasting owls (owls rely totally on water either ingested with food or produced metabolically). We conclude that the metabolic strategy in Tengmalm's owl is largely dictated by an evolutionary pressure for fasting endurance. With the restrictions set by small body size and water economy, this bird has apparently taken these adaptations to an extreme. The constraints that preclude hypothermia, which could increase the capacity for fasting even more, remain unknown.Abbreviations BM body mass - BMR basal metabolic rate - EWL vaporative water loss - MR metabolic rate - T3 triiodothyronine - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   

13.
Summary We measured meteorological conditions and estimated the energy costs of thermoregulation for young and adult Adélie Penguins (Pygoscelis adeliae) at a breeding colony near the Antarctic Peninsula. Air temperatures averaged < 5°C and strong winds were frequent. Operative temperatures (Te) for adults ranged from –8 to 28°C, averaging 5–6°C, for the period from courtship to fledging of chicks. The average energy cost of thermoregulation (Cth) for adult penguins was equivalent to 10–16% of basal metabolism. Cth comprised about 15% of the estimated daily energy budget (DEB) of incubating adults, but only about 1% of the DEB of adults feeding chicks. The Te's for chicks older than 14 days ranged from 0 to 31°C, averaging 8.0 C. The Cth for downy chicks ranged from about 31% of minimal metabolic rate (MMR) in 1 kg chicks to about 10% of MMR in 3 kg chicks. Between initial thermal independence (age 12–14 days) and the cessation of parental feeding (age 35–40 days), chicks use about 10–11% of assimilated energy for thermoregulation. Cth is equivalent to about 17% of the MMR of fledglings during their 2–3 week fast. We observed no indication of thermal stress (i.e., conditions in which birds cannot maintain stable Tb) in adults and no indication of cold stress in any age class. However, on clear, calm days when air temperature exceeds 7–10°C for several hours, downy chicks are vulnerable to lethal hyperthermia.  相似文献   

14.
Summary Body temperature (T b), oxygen consumption , thermal conductance (C) and evaporative water loss (EWL) were measured at various air temperatures (T a) in two starlings which evolved in the tropics: a migratory species from a temperate climate,Sturnus vulgaris, and a resident, desert species,Onychognathus tristrami (Aves, Passeriformes, Sturnidae).AtT a's of 4–35°C both birds hadT b of 40.6°C. At 44°C,T b ofSturnus was 45.8°C and that ofOnychognathus 43.3°C.T a of 44°C was tolerated only byOnychognathus. The thermoneutral zone (TNZ) ofSturnus was in theT a range of 29.5°C–36.5°C, that ofOnychognathus 21.5–36.5°C. ofSturnus within its TNZ (BMR) was 2.37 ml O2 g–1 h–1, which is close to the expected BMR; that ofOnychognathus, 1.67 ml O2 g–1 h–1, is only 74% of the expected. AtT a'sNZ,C ofSturnus was twice as high as that ofOnychognathus and 1.68 times the expected value, whereasC ofOnychognathus was only 94% of the expected. At highT a'sOnychognathus had higherC thanSturnus. At either low or highT a's EWL ofSturnus was greater than ofOnychognathus.The responses shown bySturnus are typical of a tropical bird living in a moderate environment. This indicates that neither in USSR where it spends the summer, nor in Israel where it spends the winter, is this starling exposed to extreme temperatures.Onychognathus is better adapted not only to high but also to the low temperatures prevailing in mountainous regions of the desert.Symbols and abbreviations BMR basal metabolic rate - C thermal conductance - EWL evaporative water loss - HE evaporative heat loss - HP heat production - TNZ thermoneutral zone  相似文献   

15.
Summary At low air temperatures (2.3–13.9°C), Wedge-tailed Shearwaters (Puffinus pacificus) shivered and their oxygen consumption increased to as much as 283% of the mean value (0.77 ml O2/g·h) within the thermoneutral zone of air temperature (23–34°C). The minimal thermal conductance of the tissues and plumage was similar to the value predicted from the body mass (320.5 g). The oxygen consumption of the birds within their thermoneutral zone was lower than predictions based on body mass. At elevated air temperatures, the shearwaters panted at respiratory frequencies as high as 260 respirations/min; maximal respiratory frequencies were not invoked until the birds had become hyperthermic. During exposure to a hot environment, the oxygen consumption of the birds increased and in most instances the shearwaters were not able to lose heat equivalent to their concurrent metabolic heat production.Symbols and abbreviations BMR basal metabolic rate - C total total thermal conductance - f respiratory frequency - TEWL total evaporative water loss - T st stomach temperature - T re rectal temperature  相似文献   

16.
Eggs with pip-holes of the black-footed (Diomedea nigripes) and Laysan (Diomedea immutabilis) albatrosses were exposed to various air temperatures in the range 20–35°C in order to detect signs of incipient endothermy in late embryos. No evidence of endothermy was found. In contrast, the O2 consumption of most hatchlings increased in response to cooling, the O2 consumption at an air temperature of 25° C exceeding that between 34 and 35°C by 40%. In a minority of hatchlings this response was not seen. It was suggested that endothermy may develop at some time during the 24 h after hatching.Abbreviations bm body mass - C total total thermal conductance of tissues and plumage - f respiratory frequency - FEO 2 fractional concentration of oxygen in air leaving chamber - FIO 2 fractional concentration of oxygen in air entering chamber - T a an temperature - T b deep-body temperature - V air-flow rate - VO2 oxygen consumption  相似文献   

17.
Summary The effect of temperature on the response properties of primary auditory fibres in caiman was studied. The head temperature was varied over the range of 10–35 ° C while the body was kept at a standard temperature of 27 °C (Ts). The temperature effects observed on auditory afferents were fully reversible. Below 11 °C the neural firing ceased.The mean spontaneous firing rate increased nearly linearly with temperature. The slopes in different fibres ranged from 0.2–3.5 imp s–1 °C–1. A bimodal distribution of mean spontaneous firing rate was found (<20 imp s–1 and >20 imp s–1 at Ts) at all temperatures.The frequency-intensity response area of the primary fibres shifted uniformly with temperature. The characteristic frequency (CF) increased nearly linearly with temperature. The slopes in different fibres ranged from 3–90 Hz °C–1. Expressed in octaves the CF-change varied in each fibre from about O.14oct °C–1 at 15 °C to about 0.06 oct °C–1 at 30 °C, irrespective of the fibre's CF at Ts. Thresholds were lowest near Ts. Below Ts the thresholds decreased on average by 2dB°C–1, above Ts the thresholds rose rapidly with temperature. The sharpness of tuning (Q10db) showed no major change in the temperature range tested.Comparison of these findings with those from other lower vertebrates and from mammals shows that only mammalian auditory afferents do not shift their CF with temperature, suggesting that a fundamental difference in mammalian and submammalian tuning mechanisms exists. This does not necessarily imply that there is a single unifying tuning mechanism for all mammals and another one for non-mammals.Abbreviations BF best frequency: frequency of maximal response at an intensity 10 dB above the CF-threshold - CF characteristic frequency - FTC frequency threshold curve, tuning curve - T s standard temperature of 27 °C  相似文献   

18.
Thermoregulatory responses to egg cooling in incubating bantam hens   总被引:1,自引:1,他引:0  
Summary O2 consumption, electromyographic activity (EMG), heart rate (HR), cloacal temperature (T b) and broodpatch temperature (T sb) were measured in bantam hens incubating eggs of different temperatures (T e). For comparison, the metabolic response to low ambient temperature (T a) was measured in non-incubating hens.O2 consumption increased nearly linearly with decreasingT e down to 30°C. At this temperature O2 consumption was about 3.5 x the resting level. Below 30°C O2 consumption increased non-linearly, and reached 4.6 x the resting consumption at 15°C. Eggs of 10 and 0°C gave no further increase. Pectoral muscle EMG and HR also increased in response to egg cooling. The onset of egg cooling was associated with a decrease inT b andT sb. Hens exposed to lowT a showed a lower critical temperature of about 24°C.It is concluded that heat loss from the brood-patch during incubation of cold eggs is compensated by shivering thermogenesis. AtT e below 15°C heat production is at a maximum level, corresponding to the expected O2 consumption at exposure to an ambient temperature of –65°C.Abbrevations EMG electromyography - T a ambient temperature - T b cloacal temperature - T e egg temperature - T sb brood-patch skin temperature  相似文献   

19.
Summary Instantaneous oxygen consumption, muscle potential frequency, thoracic and ambient temperature were simultaneously measured during heating in individual workers and drones of honey bees. Relationships between these parameters and effects of thoracic temperature on power input and temperature elevation were studied. Oxygen consumption increased above basal levels only when flight muscles became active. Increasing muscle potential frequencies correlated with elevated oxygen consumption and raised thoracic temperature. The difference between thoracic and ambient temperature and oxygen consumption were linearly related. Oxygen consumption per muscle potential (l O2 · g –1 thorax · MP–1) was two-fold higher in drones than in workers. However, oxygen consumption for heating the thorax (l O2 · g –1 thorax · (Tth-Ta) · °C–1) was nearly the same in workers and drones. Thoracic temperature affected the amount of oxygen consumed per muscle potential (R10=1.5). Achieved temperature elevation per 100 MP was more temperature sensitive in drones (R10=6–10) than in workers (R10=3.6). Q10 values for oxygen consumption were 3 in workers and 4.5–6 in drones. Muscle potential frequency decreased with a Q10=1.8 in workers and 2.7 in drones. Heating behaviour of workers and drones was different. Drones generated heat less continuously than workers, and showed greater interindividual variability in predilection to heat. However, the maximal difference between ambient and thoracic temperature observed was 22 °C in drones and 14 °C in workers, indicating greater potential for drones.Abbreviations DL dorsal-longitudinal muscle - DV dorsoventral muscle - MP muscle potential - T a ambient temperature - T th thoracic temperature  相似文献   

20.
Ulrich Sinsch 《Oecologia》1989,80(1):32-38
Summary The body temperature of free-ranging Andean toadsBufo spinulosus was measured either directly or radiotelemetrically during two 15-day periods at 3200 m elevation in the Mantaro Valley, Central Perú. All toads attempted to maintain their diurnal sum of body temperature within a narrow range. Consequently thermoregulatory behaviour differed according to cloud cover and precipitation. If the sky was clear, toads emerged from their hiding place and exposed themselves to solar radiation during 3–5 h in the morning. Core temperature increased up to 15° C above the air temperature in shade and reached maximum values of about 32° C. At air temperatures (in sun) exceeding 29° C, toads maintained body temperatures below 32° C by evaporative cooling. Following heliothermic heating during the moring toads retreated to the shade, thereby decreasing body temperature below air temperature. Under overcast sky toads remained exposed during the whole day displaying body temperatures at or slightly above ambient levels. Quantitative models to predict the core temperature of toads under the different weather conditions demonstrated that the substrate temperature was the main energy source accounting for 64.6–77.9% of total variance whereas air temperature was of minor importance (1.5–4.4%). The unexplained variance was probably due to evaporative cooling. The volume of urine stored into the urinary bladder of toads varied diurnally; during basking in the morning hours most bladders contained large volumes of urine, whereas during the afternoon the bladders were mostly empty. The bladder contents probably serve as water reserves during basking when evaporative water loss was high. Toads preferred sites that provided shady hiding places as well as sun-exposed bare soil within a radius of 5 m. However, they frequently changed their centers of activity and moved to other sites in 20–70 m distance after periods of 2–5 days. The helio-and thigmothermic behaviour of the Andean toad permits the maintenance of high core temperature during morning which probably increases the digestion rate and accelerate growth. Evaporative cooling and preference of shady sites were employed to regulate body temperature below the morning levels in response to the constraints of water balance. Periodic changes between thigmothermic behaviour and locomotory activity during the night maintains body temperature above air temperature and prolongs the period of food uptake.Dedicated to Prof. Dr. H. Schneider on the occasion of his sixtieth birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号