首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish skulls are complex kinetic systems with movable components that are powered by muscles. Cranial muscles for jaw closing pull the mandible around a point of rotation at the jaw joint using a third-order lever mechanism. The present study develops a lever model for the jaw of fishes that uses muscle design and the Hill equation for nonlinear length-tension properties of muscle to calculate dynamic power output. The model uses morphometric data on skeletal dimensions and muscle proportions in order to predict behavior and force transmission mediated by lever action. The computer model calculates a range of dynamic parameters of jaw function including muscle force, torque, effective mechanical advantage, jaw velocity, bite duration, bite force, work and power. A complete list of required morphometrics is presented and a software program (MandibLever 2.0) is available for implementing lever analysis. Results show that simulations yield kinematics and timing profiles similar to actual fish feeding events. Simulation of muscle properties shows that mandibles reach their peak velocity near the start of jaw closing, peak force at the end of jaw closing, and peak power output at about 25% of the closing cycle time. Adductor jaw muscles with different mechanical designs must have different contractile properties and/or different muscle activity patterns to coordinate jaw closing. The effective mechanical advantage calculated by the model is considerably lower than the mechanical advantage estimated from morphological lever ratios, suggesting that previous studies of morphological lever ratios have overestimated force and underestimated velocity transmission to the mandible. A biomechanical model of jaw closing can be used to interpret the mechanics of a wide range of jaw mechanisms and will enable studies of the functional results of developmental and evolutionary changes in skull morphology and physiology.  相似文献   

2.
Avian jaw function is the most interesting part of the feeding apparatus, and essential in the life of birds. The usual seven jaw muscles in birds are highly adapted for diverse food-getting devices through muscular modifications as well as changes in kinesis of the skeletal components of the skull. In the first part I have described from an introspection of my earlier works, the functional morphology of the seven jaw muscles in different birds in four functional groups such as, adductors of the lower jaw, depressor of the lower jaw, protractors of the upper jaw and retractors-cum-adductors of the upper and lower jaws. Emphasis has been laid on the differential force production by these muscles, depending on the nature of their connective tissue attachments on the skeletal parts and changes in the kinesis of the skeletal parts. The contraction of the muscles and movements of the skeletal parts are rhythmically synchronized in such a way that their concerted action performs adaptively in different feeding adaptations. The differential force production by the one-joint and two-joint muscles in terms of ‘torque’ analysis is important in jaw kinesis. The second part of the text is a historical review of some notable works centred around the avian jaw muscles, jaw kinesis, tongue muscles, synchronization with the movements of the tongue apparatus and adaptational as well as evolutionary significance of the feeding apparatus in different feeding strategies.  相似文献   

3.
Placoderms are a diverse group of armoured fishes that dominated the aquatic ecosystems of the Devonian Period, 415-360 million years ago. The bladed jaws of predators such as Dunkleosteus suggest that these animals were the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey items prior to ingestion. Here, we develop a biomechanical model of force and motion during feeding in Dunkleosteus terrelli that reveals a highly kinetic skull driven by a unique four-bar linkage mechanism. The linkage system has a high-speed transmission for jaw opening, producing a rapid expansion phase similar to modern fishes that use suction during prey capture. Jaw closing muscles power an extraordinarily strong bite, with an estimated maximal bite force of over 4400 N at the jaw tip and more than 5300 N at the rear dental plates, for a large individual (6 m in total length). This bite force capability is the greatest of all living or fossil fishes and is among the most powerful bites in animals.  相似文献   

4.
The skull of squamates has many functions, with food acquisition and ingestion being paramount. Snakes vary interspecifically in the frequency, size, and types of prey that are consumed. Natural selection should favor phenotypes that minimize the costs of energy acquisition; therefore, trophic morphology should reflect a snake's primary prey type to enhance some aspect of feeding performance. I measured 19 cranial variables for six natricine species that vary in the frequency with which they consume frogs and fish. Both conventional and phylogenetically corrected analyses indicated that fish‐eating snakes have relatively longer upper and lower jaw elements than frog‐eating snakes, which tended to have broader skull components. I also compared the ratio of the in‐lever to the out‐lever lengths of the jaw‐closing mechanism [jaw mechanical advantage (MA)] among species. Fish‐eating snakes had significantly lower MAs in the jaws than did the frog‐eating snakes. This result suggests that piscivores have faster closing jaws and that the jaws of frog‐eating snakes have higher closing forces. Cranial morphology and the functional demands of prey capture and ingestion appear to be associated with primary prey type in natricine snakes. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
A functional analysis of carnassial biting   总被引:1,自引:0,他引:1  
The jaw mechanism of carnivores is studied using an idealized model (Greaves, 1978). The model assumes: (i) muscle activity on both sides of the head, and (ii) that the jaw joints and the carnassial teeth are single points of contact between the skull and the lower jaw during carnassial biting. The model makes the following predictions: (i) in carnivores with carnassial teeth the resultant force of the jaw muscles will be positioned approximately 60% of the way from the jaw joint to the tooth—this arrangement delivers the maximum bite force possible together with a reasonably wide gape (remembering that bite force and gape cannot both be maximized); (ii) in an evolutionary sense, if greater bite force is required at the carnassial tooth, either the animal will get larger so as to deliver an absolutely larger bite force or the architecture of the muscles may change, becoming more pinnate, for example, but jaw geometry (i.e. the relative positions of the jaw joints, the carnassial tooth, and the muscle resultant force) will not change; (iii) if greater gape is required, the animal will get larger so as to have longer jaws and therefore an absolutely wider gape or change its muscle architecture allowing for greater stretch while the geometry remains unchanged; and (iv) in animals with a longer shearing region (e.g. the extinct hyaenodonts) the shearing region will be approximately 20% of jaw length and the muscle resultant force will be positioned approximately 60% of the way from the jaw joint to the most anterior shearing tooth.  相似文献   

6.
Intramandibular joints (IMJ) are novel articulations between bony elements of the lower jaw that have evolved independently in multiple fish lineages and are typically associated with biting herbivory. This novel joint is hypothesized to function by augmenting oral jaw expansion during mouth opening, which would increase contact between the tooth‐bearing area of the jaws and algal substratum during feeding, resulting in more effective food removal from the substrate. Currently, it is not understood if increased flexibility in a double‐jointed mandible also results in increased force generation during herbivorous biting and/or scraping. Therefore, we selected the herbivore Girella laevifrons for a mechanical study of the IMJ lower jaw lever system. For comparative purposes, we selected Graus nigra, a non–IMJ‐bearing species, from a putative sister genus. Shortening of the lower jaw, during flexion at the IMJ, resulted in a more strongly force‐amplifying closing lever system in the lower jaw, even in the absence of notable changes to the sizes of the muscles that power the lever system. To explain how the IMJ itself functions, we use a four‐bar linkage that models the transmission of force and velocity to and through the lower jaw via the IMJ. When combined, the functionally interrelated lever and linkage models predict velocity to be amplified during jaw opening, whereas jaw closing is highly force modified by the presence of the IMJ. Moreover, the function of the IMJ late during jaw closure provides enough velocity to detach sturdy and resilient prey. Thus, this novel jaw system can alternate between amplifying the force or the velocity exerted onto the substrate where food items are attached. This unique mechanical configuration supports the argument that IMJs are functional innovations that have evolved to meet novel mechanical challenges and constraints placed on the feeding apparatus by attached and sturdy food sources. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The evolution of feeding mechanisms in the ray-finned fishes(Actinopterygii) is a compelling example of transformation ina musculoskeletal complex involving multiple skeletal elementsand numerous muscles that power skull motion. Biomechanicalmodels of jaw force and skull kinetics aid our understandingof these complex systems and enable broad comparison of feedingmechanics across taxa. Mechanical models characterize how musclesmove skeletal elements by pulling bones around points of rotationin lever mechanisms, or by transmitting force through skeletalelements connected in a linkage. Previous work has focused onthe feeding biomechanics of several lineages of fishes, buta broader survey of skull function in the context of quantitativemodels has not been attempted. This study begins such a surveyby examining the diversity of mechanical design of the oraljaws in 35 species of ray-finned fishes with three main objectives:(1) analyze lower jaw lever models in a broad phylogenetic rangeof taxa, (2) identify the origin and evolutionary patterns ofchange in the linkage systems that power maxillary rotationand upper jaw protrusion, and (3) analyze patterns of changein feeding design in the context of actinopterygian phylogeny.The mandibular lever is present in virtually all actinopterygians,and the diversity in lower jaw closing force transmission capacity,with mechanical advantage ranging from 0.04 to 0.68, has importantfunctional consequences. A four-bar linkage for maxillary rotationarose in the Amiiformes and persists in various forms in manyteleost species. Novel mechanisms for upper jaw protrusion basedon this linkage for maxillary rotation have evolved independentlyat least five times in teleosts. The widespread anterior jawslinkage for jaw protrusion in percomorph fishes arose initiallyin Zeiformes and subsequently radiated into a wide range ofpremaxillary protrusion capabilities.  相似文献   

8.
Between weaning and adulthood, the length and height of the facial skull of the New Zealand rabbit (Oryctolagus cuniculus) double, whereas much less growth occurs in the width of the face and in the neurocranium. There is a five-fold increase in mass of the masticatory muscles, caused mainly by growth in cross-sectional area. The share of the superficial masseter in the total mass increases at the cost of the jaw openers. There are changes in the direction of the working lines of a few muscles. A 3-dimensional mechanical model was used to predict bite forces at different mandibular positions. It shows that young rabbits are able to generate large bite forces at a wider range of mandibular positions than adults and that the forces are directed more vertically. In young and adult animals, the masticatory muscles differ from each other with respect to the degree of gape at which optimum sarcomere length is reached. Consequently, bite force can be maintained over a range of gapes, larger than predicted on basis of individual length-tension curves. Despite the considerable changes in skull shape and concurrent changes in the jaw muscles, the direction of the resultant force of the closing muscles and its mechanical advantage remain stable during growth. Observed phenomena suggest that during development the possibilities for generation of large bite forces are increased at the cost of a restriction of the range of jaw excursion.  相似文献   

9.
The feeding mechanism of gars (Ginglymodi : Lepisosteidae) is characterized by cranial elevation and lower jaw rotation but minimal cranial kinesis. Gar jaws have numerous, sharply pointed, elongate teeth for capture of evasive prey. Their mandibles range from relatively short to extremely long depending on the species. Jaw length and lever dimensions were hypothesized to affect the biomechanics of force and motion during feeding, according to simple mechanical models of muscles exerting force through first- or third-order levers. A morphometric protocol was used to measure the jaw structure of seven living and five fossil species of gar and these data were used to calculate the mechanical advantage (a measure of force transmission) for both opening and closing of the mandible. Gars were found to possess low mechanical advantage (MA) and high transmission of motion, although gars occupy a range of biomechanical states across the continuum of force vs. velocity transmission. The long-nose gar, Lepisosteus osseus, has one of the lowest jaw closing MAs (0.05) ever measured in fishes. Intraspecific lever mechanics were also calculated for a developmental series (from feeding larvae to adults) of L. osseus and Atractosteus spatula. A characteristic ontogenetic curve in MA of the lower jaw was obtained, with a large decrease in MA between larva and juvenile, followed by a steady increase during adult growth. This curve correlates with a change in prey type, with the small, robust-jawed individuals feeding mainly on crustaceans and insects and the large, long-jawed individuals of all species becoming mainly piscivorous. Principal components analysis of functionally important morphometrics shows that several gar species occupy different regions of functional morphospace. Some fossil gar species are also placed within functional morphospace using this approach.  相似文献   

10.
A few orders of mammals contain many individuals with dominant masseter and pterygoid muscles that pull up and forward as they close the jaw. A dominant temporalis muscle that pulls the jaw up and to the rear is the more common condition in mammals. A long toothless region (diastema) is present in almost all mammals with a large masseter/pterygoid complex. The presence of a diastema, when few teeth have been lost and their size has not changed significantly over evolutionary time, implies that the jaws have lengthened, as in horses and selenodont artiodactyls. (A long jaw with a shorter diastema will also form if very long incisors develop as in rodents.) The sum of the forces of all the jaw muscles (represented by an arrow) typically divides the jaw into a posterior, toothless region and an anterior region where the teeth are located. In most mammals, the sum of all the bite forces at the teeth is maximized when the lengths of the projections of these two regions, onto a line perpendicular to the arrow, are in the ratio of 3 : 7. If the tooth-bearing region of the jaws becomes longer over evolutionary time this ratio will obviously be disturbed. A change in the location of some basic bony features of the jaw mechanism could maintain this ratio, but this requires major disruption of the skull and jaws. Alternatively, simply changing the masses of the muscles that close the jaw (smaller temporalis, larger masseter and/or pterygoid, or some combination), so that the lower jaw is pulled up and forward, rather than backward, also maintains the ratio. According to this view, if the jaw lengthens over evolutionary time, the relative sizes of the jaw muscles will change so that the masseter/pterygoid complex will become dominant.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 153 , 625–629.  相似文献   

11.
We describe a new species of psittacosaur, Psittacosaurus gobiensis, from the Lower Cretaceous of Inner Mongolia and outline a hypothesis of chewing function in psittacosaurs that in many respects parallels that in psittaciform birds. Cranial features that accommodate increased bite force in psittacosaurs include an akinetic skull (both cranium and lower jaws) and differentiation of adductor muscle attachments comparable to that in psittaciform birds. These and other features, along with the presence of numerous large gastroliths, suggest that psittacosaurs may have had a high-fibre, nucivorous (nut-eating) diet.Psittacosaurs, alone among ornithischians, generate oblique wear facets from tooth-to-tooth occlusion without kinesis in either the upper or lower jaws. This is accomplished with a novel isognathous jaw mechanism that combines aspects of arcilineal (vertical) and propalinal (horizontal) jaw movement. Here termed clinolineal (inclined) jaw movement, the mechanism uses posteriorly divergent tooth rows, rather than kinesis, to gain the added width for oblique occlusion. As the lower tooth rows are drawn posterodorsally into occlusion, the increasing width between the upper tooth rows accommodates oblique shear. With this jaw mechanism, psittacosaurs were able to maintain oblique shearing occlusion in an akinetic skull designed to resist high bite forces.  相似文献   

12.
Cranial kinesis in sparrows refers to the rotation of the upper jaw around its kinetic joint with the braincase. Avian jaw mechanics may involve the coupled motions of upper and lower jaws, in which the postorbital ligament transfers forces from the lower jaw, through the quadrate, pterygoid, and jugal bones, to the upper jaw. Alternatively, jaw motions may be uncoupled, with the upper jaw moving independently of the lower jaw. We tested hypotheses of cranial kinesis through the use of quantitative computer models. We present a biomechanical model of avian jaw kinetics that predicts the motions of the jaws under assumptions of both a coupled and an uncoupled mechanism. In addition, the model predicts jaw motions under conditions of force transfer by either the jugal or the pterygoid bones. Thus four alternative models may be tested using the proposed model (coupled jugal, coupled pterygoid, uncoupled jugal, uncoupled pterygoid). All models are based on the mechanics of four-bar linkages and lever systems and use morphometric data on cranial structure as the basis for predicting cranial movements. Predictions of cranial motions are tested by comparison to kinematics of white-throated sparrows (Zonotrichia albicollis) during singing. The predicted relations between jaw motions for the coupled model are significantly different from video observations. We conclude that the upper and lower jaws are not coupled in white-throated sparrows. The range of jaw motions during song is consistent with a model in which independent contractions of upper and lower jaw muscles control beak motion. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The recent reexamination of a tooth‐whorl fossil of Helicoprion containing intact jaws shows that the symphyseal tooth‐whorl occupies the entire length of Meckel's cartilage. Here, we use the morphology of the jaws and tooth‐whorl to reconstruct the jaw musculature and develop a biomechanical model of the feeding mechanism in these early Permian predators. The jaw muscles may have generated large bite‐forces; however, the mechanics of the jaws and whorl suggest that Helicoprion was better equipped for feeding on soft‐bodied prey. Hard shelled prey would tend to slip anteriorly from the closing jaws due to the curvature of the tooth‐whorl, lack of cuspate teeth on the palatoquadrate (PQ), and resistance of the prey. When feeding on soft‐bodied prey, deformation of the prey traps prey tissue between the two halves of the PQ and the whorl. The curvature of the tooth‐whorl and position of the exposed teeth relative to the jaw joint results in multiple tooth functions from anterior to posterior tooth that aid in feeding on soft‐bodied prey. Posterior teeth cut and push prey deeper into the oral cavity, while middle teeth pierce and cut, and anterior teeth hook and drag more of the prey into the mouth. Furthermore, the anterior‐posterior edges of the teeth facilitate prey cutting with jaw closure and jaw depression. The paths traveled by each tooth during jaw depression are reminiscent of curved pathways used with slashing weaponry such as swords and knifes. Thus, the jaws and tooth‐whorl may have formed a multifunctional tool for capturing, processing, and transporting prey by cyclic opening and closing of the lower jaw in a sawing fashion. J. Morphol. 276:47–64, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The ectethmoid-mandibular articulation in Melithreptus and Manorina (Meliphagidae: Aves) consists of the dorsal mandibular process fitting into and abutting against the ventral ectethmoid fossa; it forms a brace for the mandible. This articulation in Melithreptus is a typical diarthrosis with long folded capsular walls. The mandible, thus, has two separate articulations, each with a different axis of rotation. No other genus of Meliphagidae (except Ptiloprora) or any other avian family possesses a similar feature. The jaw and tongue musculature of Melithreptus are described. The two muscles opening the jaws are well developed, while those closing the jaws are small. The tongue muscles show no special developments. A large maxillary gland, presumably muscus secreting, covers the ventral surface of the jaw muscles. Its duct opens into the oral cavity just behind the tip of the upper jaw. The frilled tip of the tongue rests against the duct opening. The ectethmoid-mandibular articulation braces the adducted mandible against dorsoposteriorly directed forces. The mandible can be held closed without a compression force exerted by the mandible on the quadrate, permitting the bird to raise its upper jaw with greater ease and less loss of force. The tongue can be protruded through the slight gap between the jaws, moving against the duct opening and thus be coated with mucus. Presumably, these birds capture insects with their sticky tongue. Hence, the ectethmoid-mandibular articulation is an adaptation for this feeding method; it evolved independently in three genera of the Meliphagidae. The ectethmoid-mandibular articulation demonstrates that a bone can have two articulations with different axes of rotation, that the two articular halves can separate widely, and that articular cartilages can be flat and remain in contact over a large area. Its function suggests that the basitemporal articulation of the mandible found in many other birds has a similar function. And it demonstrates that in the evolution of the mammalian dentary-squamosal articulation, the new hinge did not have to lie on the same rotational axis as the existing quadrate-articular hinge.  相似文献   

15.
A new mechanical model for function of the pharyngeal jaw apparatus in generalized perciform fishes is developed from work with the family Haemulidae. The model is based on anatomical observations, patterns of muscle activity during feeding (electromyography), and the actions of directly stimulated muscles. The primary working stroke of the pharyngeal apparatus involves simultaneous upper jaw depression and retraction against a stabilized and elevating lower jaw. The working stroke is characterized by overlapping activity in most branchial muscles and is resolved into three phases. Four muscles (obliquus dorsalis 3, levator posterior, levator externus 3/4, and obliquus posterior) that act to depress the upper jaws become active in the first phase. Next, the retractor dorsalis, the only upper jaw retracting muscle, becomes active. Finally, there is activity in several muscles (transversus ventrales, pharyngocleithralis externus, pharyngohyoideus, and protractor pectoralis) that attach to the lower jaws. The combined effect of these muscles is to elevate and stabilize the lower jaws against the depressing and retracting upper jaws. The model identifies a novel mechanism of upper jaw depression, here proposed to be the primary component of the perciform pharyngeal jaw bite. The key to this mechanism is the joint between the epibranchial and toothed pharyngobranchial of arches 3 and 4. Dorsal rotation of epibranchials 3 and 4 about the insertion of the obliquus posterior depresses the lateral border of pharyngobranchials 3 and 4 (upper jaw). The obliquus dorsalis 3 muscle crosses the epibranchial-pharyngo-branchial joint in arches 3 and 4, and several additional muscles effect epibranchial rotation. Five upper jaw muscles cause upper jaw depression upon electrical stimulation: the obliquus dorsalis 3, levator posterior, levator externus 3/4, obliquus posterior, and transversus dorsalis. This result directly contradicts previous interpretations of function for the first three muscles. The presence of strong depression of the upper pharyngeal jaws explains the ability of many generalized perciform fishes to crush hard prey in their pharyngeal apparatus.  相似文献   

16.
17.
Male stag beetles (Lucanidae) use their extremely elongated jaws to pinch their rivals forcefully in male–male battles. The morphology of these jaws has to be a compromise between robustness (to withstand the bite forces), length and weight. Cyclommatus metallifer stag beetles circumvent this trade-off by reducing their bite force when biting with their slender jaw tips. Here we describe the functional mechanism behind the force modulation behaviour. Scanning Electron Microscopy and micro CT imaging show large numbers of small sensors in the jaw cuticle. We find a strong correlation between the distribution of these sensors and that of the material stress in the same jaw region during biting. The jaw sensors are mechanoreceptors with a small protrusion that barely protrudes above the undulating jaw surface. The sensors stimulate dendrites that extend from the neuronal cell body through the entire thickness of the jaw exoskeleton towards the sensors at the external surface. They form a sensory field that functions in a feedback mechanism to control the bite muscle force. This negative feedback mechanism enabled the stag beetles to evolve massive bite muscles without risking overloading their valuable jaws.  相似文献   

18.
The black carp, Mylopharyngodon piceus (Osteichthyes: Cyprinidae), crushes its snail and other molluscan prey with robust pharyngeal jaws and strong bite forces. Using gross morphology, histological sectioning, and X‐ray reconstruction of moving morphology (XROMM), we investigated structural, behavioral, and mechanical aspects of pharyngeal jaw function in black carp. Strut‐like trabeculae in their pharyngeal jaws support large, molariform teeth. The teeth occlude with a hypertrophied basioccipital process that is also reinforced with stout trabeculae. A keratinous chewing pad is firmly connected to the basioccipital process by a series of small bony projections from the base of the pedestal. The pharyngeal jaws have no bony articulations with the skull, and their position is controlled by five paired muscles and one unpaired median muscle. Black carp can crush large molluscs, so we used XROMM to compare pharyngeal jaw postures as fish crushed ceramic tubes of increasing sizes. We found that black carp increase pharyngeal jaw gape primarily by ventral translation of the jaws, with ventral rotation and lateral flaring of the jaws also increasing the space available to accommodate large prey items. A stout, robust ligament connects left and right jaws together firmly, but allows some rotation of the jaws relative to each other. Contrasting with the pharyngeal jaw mechanism of durophagous perciforms with fused left and right lower pharyngeal jaws, we hypothesize that this ligamentous connection may serve to decouple tensile and compressive forces, with the tensile forces borne by the ligament and the compressive forces transferred to the prey. J. Morphol. 276:1422–1432, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The stingray family Myliobatidae contains five durophagous (hard prey specialist) genera and two planktivorous genera. A suite of morphological features makes it possible for the hard prey specialists to crush mollusks and crustaceans in their cartilaginous jaws. These include: 1) flat, pavement-like tooth plates set in an elastic dental ligament; 2) multiple layers of calcified cartilage on the surface of the jaws; 3) calcified struts running through the jaws; and 4) a lever system that amplifies the force of the jaw adductors. Examination of a range of taxa reveals that the presence of multiple layers of calcified cartilage, previously described from just a few species, is a plesiomorphy of Chondrichthyes. Calcified struts within the jaw, called "trabecular cartilage," are found only in the myliobatid genera, including the planktivorous Manta birostris. In the durophagous taxa, the struts are concentrated under the area where prey is crushed, thereby preventing local buckling of the jaws. Trabecular cartilage develops early in ontogeny, and does not appear to develop as a direct result of the stresses associated with feeding on hard prey. A "nutcracker" model of jaw function is proposed. In this model, the restricted gape, fused mandibular and palatoquadrate symphyses, and asynchronous contraction of the jaw adductors function to amplify the closing force by 2-4 times.  相似文献   

20.
The anatomy of the feeding apparatus of the lemon shark, Negaprion brevirostris, is investigated by gross dissection, computer axial tomography, and histological staining. The muscles and ligaments of the head associated with feeding are described. The upper and lower jaws are suspended by the hyoid arch, which in turn is braced against the chondrocranium by a complex series of ligaments. In addition, various muscles and the integument contribute to the suspension and stability of the jaws. The dual jaw joint is comprised of lateral and medial quadratomandibular joints that resist lateral movement of the upper and lower jaws on one another. This is important during feeding involving vigorous head shaking. An elastic ethmoplatine ligament that unites the anterior portion of the upper jaw to the neurocranium is involved with upper jaw retraction. The quadratomandibularis muscle is divided into four divisions with a bipinnate fiber arrangement of the two large superficial divisions. This arrangement would permit a relatively greater force per unit volume and reduce muscle bulging of the jaw adductor muscle in the spatially confined cheek region. Regions of relatively diffuse integumental ligaments overlying the adductor mandibulae complex and the levator palatoquadrati muscle, interspersed with localized regions of longer tendonlike attachments between the skin and the underlying muscle, permit greater musculoskeletal movement relative to the skin. The nomenclature of the hypobranchial muscles is discussed. In this shark they are comprised of the unsegmented coracomandibularis and coracohyoideus, and the segmented coracoarcualis. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号