首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李春香  杨群 《遗传》2003,25(2):177-180
对杉科(Taxodiaceae)与柏科(Cupressaceae s.s.)的28S rRNA基因的部分序列(约630 bp)进行PCR扩增、序列测定和系统发生关系分析,用简约法和邻接法构建的系统发生树基本一致。结果表明,杉科与柏科构成一个单系群,支持将杉科、柏科(Sciadopitys除外)合并为一个科——广义柏科(Cupressaceae sensu lato)的观点。在广义柏科中,Taiwania、Athrotaxis分别形成一支系;Metasequoia、Sequoia、Sequoiadendron关系较近,聚成一支系; Taxodium、Glyptostrobus、Cryptomeria聚成一支系;柏科聚成一支系。这一分析结果与叶绿体基因序列的分析结果相吻合,但是由于28S rRNA基因的进化速率较慢,尚不能分辨上述各个支系之间的系统演化关系。 Abstract:DNA sequences from 28S rDNA were used to assess relationships between and within traditional Taxodiaceae and Cupressaceae s.s.The MP tree and NJ tree generally are similar to one another.The results show that Taxodiaceae and Cupressaceae s.s.form a monophyletic conifer lineage excluding Sciadopitys.In the Taxodiaceae-Cupressaceae s.s.monophyletic group,the Taxodiaceae is paraphyletic.Taxodium,Glyptostrobus and Cryptomeria forming a clade(Taxodioideae),in which Glyptostrobus and Taxodium are closely related and sister to Cryptomeria;Sequoia,Sequoiadendron and Metasequoia are closely related to each other,forming another clade (Sequoioideae),in which Sequoia and Sequoiadendron are closely related and sister to Metasequoia;the seven genera of Cupressaceae s.s.are found to be closely related to form a monophyletic lineage (Cupressoideae).These results are basically similar to analyses from chloroplast gene data.But the relationships among Taiwania,Sequoioideae,Taxodioideae,and Cupressoideae remain unclear because of the slow evolution rate of 28S rDNA,which might best be answered by sequencing more rapidly evolving nuclear genes.  相似文献   

2.
Archicupressus is a new genus of the Cupressaceae based on a permineralized conifer female cone from the Upper Cretaceous of Hokkaido. The type species,Archicupressus nihongii sp. nov., is characterized by peltate bract-scale complexes consisting of a completely fused bract and scale bearing erect seeds. Bract-scale complexes are arranged in whorls of three on the cone axis. Each complex has a bristle-like projection, the bract apex, at the top. Affinities to some genera in the Cupressaceae are discussed. Consecutive number from the previous paper (Ohsawaet al., 1992). Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan to Makoto Nishida, No. 02640533.  相似文献   

3.
Nucleotide sequences from four chloroplast genes, the matK, chlL, intergenic spacer (IGS) region between trnL and trnF, and an intron of trnL, were determined from all species of Taxodiaceae and five species of Cupressaceae sensu stricto (s.s.). Phylogenetic trees were constructed using the maximum parsimony and the neighbor-joining methods with Cunninghamia as an outgroup. These analyses provided greater resolution of relationships among genera and higher bootstrap supports for clades compared to previous analyses. Results indicate that Taiwania diverged first, and then Athrotaxis diverged from the remaining genera. Metasequoia, Sequoia, and Sequoiadendron form a clade. Taxodium and Glyptostrobus form a clade, which is the sister to Cryptomeria. Cupressaceae s.s. are derived from within Taxodiaceae, being the most closely related to the Cryptomeria/Taxodium/Glyptostrobus clade. These relationships are consistent with previous morphological groupings and the analyses of molecular data. In addition, we found acceleration of evolutionary rates in Cupressaceae s.s. Possible causes for the acceleration are discussed.  相似文献   

4.
Yubaristrobus is a new genus of the Taxodiaceae based on a permineralized seed cone from the Upper Cretaceous of Hokkaido. The type species,Y. nakajimae sp. nov., is characterized by peltate bract-scale complexes consisting of a completely-fused bract and scale. The bract-scale complexes are spirally arranged as in most taxodiaceous genera. Their vascular arrangement is specialized and unique in the Taxodiaceae and suggests a relationship with the Cupressaceae. Consecutive number from the previous paper (Ohsawa, M. Nishida and H. Nishida, 1992b).  相似文献   

5.
通过扫描电镜和常规石蜡切片技术,观察了柏科4个属(Fokienia、Cupressus、Chamaecyparis和Juniperus)植物雌球果中胚珠的发育及苞片的结构变化。在所有研究的种类中,可育苞片腋部最先观察到的结构是一扁平的突起,并在其上分化出发育为胚珠的胚珠原基。在雌球果的发育过程中,未观察到独立的珠鳞发育。不同的种中,胚珠的数量和发育顺序有所不同,但苞片的发育是相似的。传粉前,苞片的结构与叶相似。传粉后,由于剧烈的居间生长,苞片发育为盾形,形成球形的球果。另外,在发育后期,苞片内维管系统变得复杂,并且在近轴面有反向的维管束发育。我们还对柏科植物雌球果的形态学特性及其可能的演化趋势进行了讨论。  相似文献   

6.
通过扫描电镜和常规石蜡切片技术,观察了柏科4个属(Fokienia、Cupressus、Chamaeyparis 和Juniperus)植物雌球果中胚珠的发育及苞片的结构变化.在所有研究的种类中,可育苞片腋部最先观察到的结构是一扁平的突起,并在其上分化出发育为胚珠的胚珠原基.在雌球果的发育过程中,未观察到独立的珠鳞发育.不同的种中,胚珠怕数量和发育顺序有所不同,但苞片的发育是相似的.传粉前,苞片的结构与叶相似.传粉后,由于剧烈的居间维管束发育.我们还对柏科植物雌球果的形态学特性及其可能的演化趋势进行了讨论.  相似文献   

7.
Two new species of pinaceous cones belonging toObirastrobus gen. nov. are described from the Upper Cretaceous of Hokkaido. Bract-scale complexes are arranged helically and each consists of a small bract and a large scale. The bract and scale are separated. The scale tapers distally and its apex does not become papery. The anatomy of the bracts, scales, and seeds shows a combination of features unique in the Pinaceae and resembling those of the extant genusKeteleeria and the extinct genusPseudoaraucaria. Consecutive number from the previous paper (Ohsawaet al., 1992). Supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture Nos. 63540545 and 02640533 to Makoto Nishida.  相似文献   

8.
In Sequoiadendron ovules are borne inside the ovulate cone, and pollination drops secreted from these ovules collect pollen. We examined: (1) the relation between ovular position and pollen capture; (2) pollen behavior when in contact with a pollination drop; and (3) ultrastructure of ovules during pollination drop secretion. During wet periods a water sheet forms on the surface of the cone due to bract shape and wettability. Pollination drops persist inside the wetted cone, and pollen capture resumes immediately after drying. Pollen landing on a pollination drop is taken inside the drop and carried into the micropyle when the drop contracts. Several notable ultrastructural features appear in the nucellus, integument, chalaza, and bract lamina during pollination-drop secretion. The abaxial surface of the lamina is covered by a membrane that may contribute to the wettable nature of the surface.  相似文献   

9.
Compressed seed cones and pollen cones of Sewardiodendron laxum are described from the Middle Jurassic of Yima, Henan, central China. They are either organically attached to or associated with leafy shoots. Seed cones are terminally borne. Each cone is ovate to elongated, up to 6.5 cm long and 3.5 cm wide, and consists of a stout axis and numerous helically arranged bract-scale complexes. The bract protrudes beyond and is partially fused with the reduced ovuliferous scale. The ovuliferous scale bears approximately six inverted, small, and flattened seeds. Pollen cones are borne in terminal clusters. Microsporophylls are helically arranged, each bearing three abaxial, basally fused pollen sacs. Pollen is assaccate, rounded, and with an inconspicuous pore. Morphological, structural, and cuticular features of seed cones, pollen cones, and leafy shoots of S. laxum are compared with those of fossil and extant conifers. S. laxum is included in Taxodiaceae and believed to have its closest affinities with a Mesozoic conifer Elatides and a group of Cunninghamia-like conifers. It is reconstructed as a half-evergreen tree that lived in a humid, warm-temperate climate.  相似文献   

10.
The conifer family Cupressaceae encompasses seven subfamilies. Five of them were once considered to constitute the family Taxodiaceae, later eliminated because of its paraphyletic nature but remaining as an informal category for early-diverging Cupressaceae lineages. Among the taxodiaceous subfamilies, Athrotaxoideae shows a unique morphology in its ovuliferous complexes (OCs) and a phylogenetically unexplored fossil record. We describe the new genus and species Patagotaxodia lefipanensis, based on OC adpressions associated with leafy branches collected at the Maastrichtian section of the Lefipán Formation (Patagonia, Argentina), and we refer it to Athrotaxoideae. We include Patagotaxodia in total evidence phylogenetic analysis to test its affinity, and we recover it within the subfamilies Athrotaxoideae or Cunninghamioideae. However, we argue that the characters supporting the athrotaxoid affinity are more meaningful in a taxodiaceous systematic context. This placement is also supported by taxon inclusion-exclusion experiments. We discuss the position of other Cretaceous athrotaxoid records. With basis on the morphological insights provided by the OC morphology of extant and extinct Athrotaxoideae, we study the evolution of the OC morphology in the family in a phylogenetic context and discuss the results in the light of the fossil record of the family. We discuss how and when the different morphologies appeared in the family. Based on phylogenetic, temporal, morphological, and ontogenetic evidence, we conclude that the OC morphology shown by the subfamily Athrotaxoideae is intermediate between two of the most common morphologies within extant and extinct Cupressaceae species, one of which would show adaptative advantages over basal morphologies.  相似文献   

11.
Five species including two new species,Araucarioxylon kiiense Ogura,Taxodioxylon albertense (Penhal.) Shimakura,Cupressinoxylon cryptomerioides Stopes,Xenoxylon watarianum sp. nov. andCedroxylon shimakurae sp. nov., were described from the Upper Cretaceous (Late Turonian-Santonian) of southern Saghalien. Consecutive number from the previous paper (Nishida and Nishida, 1985). Contributions from the Laboratory of Phylogenetic Botany, Chiba University No. 100. Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture No. 59540441.  相似文献   

12.
Cupressaceae and Taxodiaceae have recently been merged under the earlier name Cupressaceae s.I. by many authors, as the two families are similar in a number of morpho logical characters. Sciadopitys S. et Z., which has often been treated as a morphologically isolated member of the Taxodiaceae, has recently been considered as a monotypic family, Sciadopityaceae. The Cupressaceae s.s. may be reorganized into two subfamilies. The Cu pressoideae is composed of genera with the uppermost cone-scales infertile and can be divided into four tribes: Cnpresseae, including Cupressus, X Cupressocyparis, Charnaecyparis and Fokeinia;Thujopsideae, including Thuja, Thujopsis and Platycladusl Junipereae, including Juniperus and Microbiota; and Tetraclineae, including Calocedrus and Tetraclinis. The Callitroideae is composed of genera with the uppermost cone-scales fertile and can be divided into three tribes: Actinostrobeae, including Actinostrobus, Callitris, Fitzroya and Neocallitropsis; Widdringtoneae, including Pilgerodendron, Diselma and Widdringtonia ; Libocedreae, including Libocedrus, Papuacedrus and Austrocedrus. Five geographical distribution patterns are recognized in the 21 genera of Cupressaceae. (a) One genus, X Cupressocyparis, is a natural hybrid derived from selections in England; (b) Two genera, Cupressus and Juniperus, are distributed in Africa, Europe, Asia and North America; (c) Three genera, Thuja, Chamaecyparis, and Calocedrus, are disjnnctly distributed in Eastem Asia and North America; (d) Five genera, Actinostrobus, Callitris, Libocedrus, Papuacedrus and Widdringtonia, have limited distribution; and (e) The other 10 genera, which are monotypic, are restricted to narrow areas except Plotycladus. Three centers of genera diversity are identified in the Cupressaceae, i. e Eastern Asia with nine genera, southwestern North America with five genera, and Australia and its adjacent islands in the east with six genera, including New Zealand,. Tasmania, New Caledonia, and New Guinea. Other important areas are western Mediterranean with three genera and Chile and Argentinawith three genera.  相似文献   

13.
In the present paper,both cladistic analysis and phenetic analysis were conducted to evaluate the phylogenetic relationships of the Taxodiaceae based on an extensive literature review and study of herbarium. In the cladistic analysis,the Sciadopityaceae was chosen as outgroup.The polarity of characters was determined mainly according to outgroup comparison,fossil evidence and generally accepted viewpoints of morphological evolution.By the result of compatibility analysis,character 2(leaf type),which possessed a much higher coefficient than others whether or not its polarity was altered,was deleted. Finally,a data matrix consisting of all the extant nine genera and 24 characters was analyzed using Maximal Same Step Method,Synthetic Method,Evolutionary Extremal Aggregation Method and Minimal Parallel Evolutionary Method,and four cladograms were generated,of which only the most parsimonious one (Fig.1)was presented for discussion. The cladogram shows that the Taxodiaceae are assorted along five lines of evolution: 1)Metasequoia;2)Sequoiadendron,Sequoia;3)Cryptomeria;4)Glyptostrobus and Taxodium;5)Cunninghamia,Athrotaxis and Taiwania. Ten genera(including Sciadopitys)and 59 characters were used in the phenetic analysis.The phenogram(Fig.2)indicates that Sciadopitys is a very distinct group with remote affinity to the other genera,and the Taxodiaceae are divided into four groups:1)Sequoia,Sequoiadendron;2)Athrotaxis,Cunninghamia and Taiwania;3)Cryptomeria,Glyptostrobus and Taxodium;4)Metasequoia. Based primarily on the result of cladistics,with reference to that of phenetics,the main conclusions were drawn as follows:(1)Generic relationships:Cryptomeria should be considered the most primitive genus in the extant groups of the Taxodiaceae. Glyptostrobus and Taxodium, close to Cryptomeria, are sister taxa and relatively primitive groups. Sequoiadendron and Sequoia are closely related and intermediate advanced. Metasequoia is a more or less isolated taxon, relatively close to Sequoiadendron and Sequoia. Cunninghamia. Athrotaxis and Taiwania might represent a single lineage and form a very advanced group, of which Taiwania may be the most specialized. (2) Systematic treatments: The authors support the viewpoint that Sciadopitys should be treated as an independent family, and suggest that the Taxodiaeae should be divided into five tribes. Systematic arrangements are as follows: Taxodiaceae Warming Trib. 1. Cryptomerieae Vierhapper Gen. 5. Sequoia Endl. Gen. 1. Cryptomeria D. Don Trib. 4. Metasequoieae Pilger et Melchior Trib. 2. Taxodieae Benth. et Hook. Gen. 6. Metasequoia Miki ex Hu et Cheng Gen. 2. Glyptostrobus Endl. Trib. 5. Cunninghamieae Zucc. Gen. 3. Taxodium Rich. Gen. 7. Cunninghamia R. Br. Trib. 3. Sequoieae Wettstein Gen. 8. Athrotaxis D. Don Gen. 4. Sequoiadendron Buchholz Gen. 9. Taiwania Hayata  相似文献   

14.
In this comparative developmental genetics study, we test hypotheses based on fossil and morphological data on reproductive organ morphology and evolution in conifers--specifically, the ovule-bearing organ in Cupressaceae and Taxodiaceae. Genes homologous to the Arabidopsis gene AGAMOUS are expressed in ovuliferous scales of spruces (Picea) throughout development. Previous studies have shown that the AGAMOUS subfamily of MADS-box genes predates the split between angiosperms and gymnosperms, and that these genes have in part conserved functions in reproductive development among seed plants, especially in the specification of identity of the ovule-bearing organs. These data indicate that their expression in conifer families other than Pinaceae might be used as markers for organs homologous to the Pinaceae ovuliferous scale. Here we have isolated putative AGAMOUS orthologs from Cupressaceae and Taxodiaceae and analyzed their expression pattern in seed cones to test for the presence of morphological homologs of ovuliferous scales. Our results were not congruent with the hypothesis that the tooth of the Cryptomeria seed cone is homologous to the Picea ovuliferous scale. Likewise, the hypothesis that the bracts of Thujopsis and Juniperus contain fused ovuliferous scales was not supported. However, we found expression of AGAMOUS homologs in the sterile bracts of Cupressaceae seed cones at late developmental stages. This expression probably represents a novel gene function in these conifer families, since no corresponding expression has been identified in Pinaceae. Our study suggests that the evolutionary history of modern conifer cones is more diverse than previously thought.  相似文献   

15.
16.
Four species of dicotyledonous woods including three new species,Aextoxicoxylon harambouri sp. nov.,Myrceugenellites maytenoides sp. nov.,Laurelites doroteaensis sp. nov. andLaurinoxylon uniseriatum Gothan, were described from the Tertiary of Cerro Dorotea, Ultima Esperanza and Fuego Island, Chile. It was elucidated thatNothofagoxylon boureaui Salard from Cerro Dorotea is synonymous withLaurinoxylon uniseriatum from Antarctica. Consecutive number from the previous paper (Nishida, 1984). Contributions from the Laboratory of Phylogenetic Botany, Chiba University No. 118 and contributions from Chiba University Botanical Expedition to the Andes No. 17. Supported by a Grant in-Aid for Overseas Scientific Survey from the Ministry of Education, Science and Culture Nos. 7405, 404114 and 62043014.  相似文献   

17.
Four species including two new species,Araucarioxylon pseudochoshiense sp. nov.,Taxodioxylon pseudoablertense Nishida et H. Nishida,Taxodioxylon nihongii Nishida et H. Nishida andTaxaceoxylon saghalienense sp. nov., were described from the Upper Cretaceous (Late Turonian-Santonian) of southern Saghalien. Consecutive number from the previous paper (Nishida and Nishida, 1986). Contributions from the Laboratory of Phylogenetic Botany, Chiba University No. 102. Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture No. 59540441.  相似文献   

18.
杉科、柏科是松柏类裸子植物中的重要类群,其系统分类研究一直是裸子植物的研究热点之一.但是杉科与柏科之间及其内部各属之间的系统发生关系却一直存在争议.一般认为杉科、柏科单独成科.近年来的分子系统学及分支系统学研究结果证实:除了金松属以外,杉科和柏科为一单系群,应合并为一个科Cupres-saceae sensu lato(广义柏科),其主要分支类群的系统发生关系也已经基本确立,而金松属则单独成立金松科.  相似文献   

19.
Three new species and one new genus of dicotyledonous woods,Chilechicoxylon microporosum gen. et sp. nov.,Proteoxylon patagonicum sp. nov. andLaurinium beilschmiedioides sp. nov., are described from the Tertiary (or in case of the first and last species from the Cretaceous-Tertiary) of Chile Chico, XI Region, Chile. Previously only wood of temperate species has been identified from Patagonia.Proteoxylon patagonicum (Proteaceae) is the first recorded tropical wood species from this geographical area. Consecutive number from the previous paper (M. Nishida, H. Nishida and T. Nasa, 1988). Contributions from the Laboratory of Phylogenetic Botany, Chiba University No. 120 and contributions from Chiba University Botanical Expedition to the Andes No. 20. Supported by a Grant-in-Aid for Overseas Scientific Research from the Ministry of Education, Science and Culture Nos. 61041015 and 63041034.  相似文献   

20.
落羽杉属(杉科)叶表皮结构及气孔参数   总被引:9,自引:0,他引:9  
落羽杉属Taxodium Rich.现生3种植物——落羽杉T. distichum (L.) Rich.、池杉T. ascendens Brongn.和墨西哥落羽杉T. mucronatum Tenore.的条形叶为双面气孔型或单面气孔型。叶片远轴面气孔分布于中脉两侧,每侧各有4-8列气孔。叶片中部气孔数量稳定,顶部和基部气孔数量比中部略少。近轴面气孔在中脉两侧各有1-4行,有时仅少数几个气孔或没有气孔分布。非气孔分布区内,表皮细胞长方形,细胞壁直或稍微呈波状,细胞长轴与叶片长轴一致。气孔分布区内的表皮细胞有时为多边形。气孔器椭圆形,长轴与叶片长轴垂直或成一定的角度。保卫细胞壁加厚明显,极端联合形成极层结构。落羽杉属3种现生植物的气孔密度和气孔指数差异显著,不同采集地的落羽杉气孔密度和气孔指数差异不显著。这3种植物的气孔指数的变异系数均小于气孔密度的变异系数,用气孔指数指示大气CO2浓度比用气孔密度可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号