首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In freeze-fracture (FF) preparations of ADH-stimulated toad urinary bladder, characteristic intramembrane particle (IMP) aggregates are seen on the protoplasmic (P) face of the luminal membrane of granular cells while complementary parallel grooves are found on the exoplasmic (E) face. These IMP aggregates specifically correlate with ADH-induced changes in water permeability. Tubular cytoplasmic structures whose membranes contain IMP aggregates which look identical to the IMP aggregates in the luminal membrane have also been described in granular cells from unstimulated and ADH-stimulated bladders. The diameter of these cytoplasmic structures (0.11 +/- 0.004 micrometers) corresponds to that of tubular invaginations of the luminal membrane seen in thin sections of ADH-treated bladders (0.13 +/- 0.005 micrometers). Continuity between the membranes of these cytoplasmic structures (which are not granules) and the luminal membrane has been directly observed in favorable cross-fractures. In FF preparations of the luminal membrane, these apparent fusion events are seen as round, ice-filled invaginations (0.13 +/- 0.01 micrometer Diam), of which about half have the characteristic ADH-associated aggregates near the point of membrane fusion. They are less numerous than, but linearly related to, the number of aggregates counted in the same preparations (n = 78, r = 0.71, P less than 0.01). These observations suggest that the IMP aggregates seen in luminal membrane after ADH stimulation are transferred preformed by fusion of cytoplasmic with luminal membrane.  相似文献   

2.
Antidiuretic hormone (ADH) promotes the fusion of cytoplasmic tubular structures with the luminal membrane of receptor tissues such as toad urinary bladder. To determine whether fusion is a continuous cyclic process, bladders were stimulated with ADH with colloidal gold in the luminal bathing medium. After as little as 15 min of stimulation, gold-filled tubules were seen in the cytoplasm, evidence that cycling was indeed taking place. Serial sections confirmed that these tubules had no connection with the luminal membrane, and had returned to the cytoplasm. Cessation of ADH stimulation, followed by a second stimulation, greatly reduced the number of gold-filled cytoplasmic tubules, suggesting that many tubules were capable of refusion. Mean fusion event diameter underwent significant changes, enlarging at 15 min, and contracting at 60 min. Thus, ADH initiates a process of continuous cycling of cytoplasmic tubules between cytoplasm and luminal membrane.  相似文献   

3.
Antidiuretic hormone (ADH) treatment of toad urinary bladder activates an exocytotic-like process by which intramembrane particle aggregates are transferred from membranes of elongated cytoplasmic tubules to the luminal-facing plasma membrane. We find that the number of these ADH- induced fusion events, and the number of aggregates appearing in the luminal membrane, are reduced when the luminal bathing medium is made hyperosmotic. As an apparent consequence of the inhibition of their fusion with the luminal membrane, the elongated cytoplasmic tubules become enormously swollen into large, rounded vesicles. These results are consistent with the view that osmotic forces are essential to the basic mechanism of exocytosis.  相似文献   

4.
Antidiuretic hormone (ADH) stimulation increases the apical membrane water permeability of granular cells in toad urinary bladder. This response correlates closely with the fusion of tubular cytoplasmic vesicles with the membrane and delivery of intramembrane particle (IMP) aggregates from the tubules (aggrephores) to the apical membrane. These aggregates are believed to be associated with the channels responsible for the water permeability increase. Removal of ADH triggers apical membrane endocytosis and disappearance of aggregates from the apical membrane. However, it has been unclear whether aggregate disappearance is due to disassembly of aggregates within the apical membrane or to their endocytic retrieval as intact structures. Using colloidal gold and horseradish peroxidase to follow endocytosis from the apical surface after ADH removal, we have directly observed in cross-fractured bladder cells the intramembrane structure of intracellular vesicles that contain these fluid-phase markers. Under these conditions, intact aggregates can be identified in the membrane of tubular endocytosed vesicles. This directly demonstrates that conditions which lower apical membrane water permeability cause the tubular aggrephores to "shuttle" intact aggregates from the apical membrane back into the cytoplasm. An additional population of vesicles with tracer are found which are spherical and display structural features of the apical membrane, as well as occasional aggregates. These vesicles may be responsible for retrieval of aggregates from the surface apical membrane.  相似文献   

5.
Freeze-fracture electron microscopy reveals intramembrane particle arrays in basal membranes of granular epithelial cells as well as both upper and lower plasma membranes of the underlying basal cells in the toad urinary bladder. These particle arrays are morphologically indistinguishable from the luminal membrane aggregates which are known to be associated with antidiuretic hormone (ADH)-stimulated water transport. In both granular and basal cells particle arrays are frequently located in and/or around the openings of vesicular and/or tubular structures fused to the plasma membranes, suggesting that they may be transferred from the cytoplasm by membrane fusion. Quantification of cytoplasmic aggrephores in control granular cells shows that they can be numerous and as close to the basolateral membrane as they are with the luminal membrane, to which they are known to fuse and deliver aggregates upon ADH stimulation. Aggrephore-like tubules were also found in the basal cells. Particle array densities were quantified for 6 pairs of control and ADH-stimulated hemibladders. At least 1440 microns 2 area of plasma membrane for each membrane domain was examined. Results indicate that the presence of these particle arrays in granular and basal cell membranes is highly variable and that exposure to ADH does not cause a statistically significant increase in their frequency.  相似文献   

6.
Intramembranous particle aggregates (presumed sites for water flow) which appear in the luminal membrane consequent to ADH treatment are derived from cytoplasmic membrane structures (now termed "aggrephores") which fuse with the luminal membrane. We have previously shown that bladders stimulated in the absence of an osmotic gradient have about twice as many aggregates and about three times as many sites of aggrephore fusion as bladders stimulated with ADH in the presence of a 175 milliosmolal gradient. The present studies show that the frequency of fused aggrephores and luminal membrane aggregates can be modified as a consequence of alterations in transmembrane water flow initiated by changing the transbladder osmotic gradient during hormone stimulation. Bladders treated with ADH for 1 hr without a gradient and then for 1 hr with a gradient had approximately 1/3 as many aggregates and fusion sites as paired bladders treated for 2 hr without a gradient. Conversely, bladders treated with ADH for 1 hr with a gradient and then for 1 hr without a gradient had approximately 2x as many aggregates and fusion sites as bladders treated for 2 hr with a gradient. In other experiments we demonstrate that the time course of hormone washout is greatly accelerated if carried out in the presence of an osmotic gradient. In paired bladders that were first stimulated with ADH for 30 min in the absence of a gradient, aggregates and fusion sites as well as osmotic water permeability determined in fixed bladders, persisted at near maximum levels for 15 min of washout in the absence of a gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Although it is well accepted that vasopressin (ADH) increases the permeability to water of the toad bladder granular cell's luminal membrane, recent studies have suggested that regulation also takes place at an additional "postluminal" site within the epithelial granular cell. These studies are based upon the observation that a number of experimental maneuvers can alter tissue permeability to water, but do not change the number of particle aggregates observed on the protoplasmic face of the granular cell's luminal membrane with freeze-fracture electron microscopy. These aggregates are believed by many investigators to mediate the transport of water across the luminal membrane. The dissociation between permeability and aggregate frequency described above has been variously interpreted as the consequence of changes in the permeability of the aggregates themselves, or of changes in the permeability of a "postluminal" barrier that is functionally in series with the luminal membrane. We attempted to distinguish between these 2 possibilities by studying paired toad bladders during 3 protocols that alter vasopressin-stimulated water flow across the intact tissue without altering aggregate frequency. Estimates of the permeability of postluminal barriers were obtained by exposing the luminal surface to amphotericin B, an antibiotic that forms water-permeant channels in the luminal membrane. Of the 3 protocols, only diminishing bladder filling volume decreased the water flow elicited by luminal amphotericin B, suggesting that only that protocol indeed decreased the permeability of some postluminal barrier. The other 2 protocols, increasing PCO2 and repeatedly stimulating the bladder with vasopressin, did not alter amphotericin B-elicited flow, suggesting that postluminal barriers were not altered by these 2 protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Antidiuretic hormone (ADH) induces the fusion of long tubular organelles (aggrephores) with the luminal membrane of the receptor cell, and the delivery of particle aggregates to the membrane. Water flow is believed to take place through the particles. Nothing is known about the origin of the particle aggregates, their incorporation into the aggrephores, or the possible relationship of the aggrephores to the vesicular traffic that takes place in the epithelial cell. In the present studies of the ADH-sensitive epithelial cells of the toad urinary bladder, we have found that the spherical heads of the aggrephores appear to be clathrin-coated vesicles. We propose that vesicles originating from sites such as the Golgi or the luminal membrane may be engaged in aggrephore assembly, the resupply of particle aggregates to the aggrephores, and/or the removal of aggregates, and that the aggrephores may be central points in the pattern of vesicular traffic in the cell.  相似文献   

9.
In certain epithelial tissues, water permeability is markedly increased by antidiuretic hormone. This so-called hydrosmotic effect has been shown to be mediated by 3'-5' cyclic adenosine monophosphate, which, in turn, alters the permeability o the luminal membrane of receptor cells. This review deals wity ultrastructural alterations occurring in the membrane, as observed with freeze-fracture electron microscopy. Basically, these alterations consist of organized particle aggregates which appear in the apical membrane. In all experimental conditions, similar aggregates can be observed in the membrane of cytoplasmic vesicles. ADH stimulation triggers the fusion of these vesicles with the apical membrane resulting in the concomitant transfer of particle aggregates. It has been shown, in a wide range of experimental conditions, that both number and total area of the aggregates are directly proportional to the water permeability of the tissue. It is generally assumed that particle aggregates contain transmembrane channels that are selectively to water.  相似文献   

10.
Aggregates of intramembrane particles appear in the luminal membranes of renal collecting duct and amphibian bladder cells after stimulation by antidiuretic hormone (ADH). We undertook this freeze-fracture study to determine whether particle aggregates, once in place, remain in the luminal membrane of the amphibian bladder after the membrane is physically separated from the rest of the cell. We found that the aggregates do remain in high yield in isolated membranes stabilized with a bifunctional imidoester (DTBP) followed by fixation with glutaraldehyde, or unfixed but stabilized with DTBP. These findings support the view that the particles are intrinsic membrane components and that their organization in the form of aggregates does not depend on the presence of the intact cell. In addition, the availability of isolated membranes containing particle aggregates provides a starting point for the isolation of the water-conducting proteins.  相似文献   

11.
Summary Specific membrane differentiation occurs in the cytoplasmic-tubule system of the absorptive cells lining the mucosa of the lamprey anterior intestine. The absorptive cells are characterized by the presence of abundant mitochondria and a system of well-developed cytoplasmic tubules (120 nm in diameter). The cytoplasmic tubules open on to the basolateral cell surface and contain numerous lipoprotein particles (50–100 nm diam.) in their lumina. Lipoprotein particles are also observed in the endoplasmic reticulum and the Golgi complex, and they are transfered to the lateral intercellular space and lamina propria by way of the cytoplasmic tubules. Spirally-wound parallel rows of particles are found in the luminal surface of the cytoplasmic tubules. The rows are 17 nm apart and are wound spirally at a pitch of 210 nm. Freeze-fracture images of the tubule membranes also show spiral arrays of particles (9 nm in diameter) on the P-face, and complementary shallow grooves on the E-face. From these observations, it is suggested that the cytoplasmic-tubule system of the intestinal absorptive cells serves as a channel for the transport of synthesized lipoprotein into the interstitium, and is also the site of the ion and water exchange essential for the maintenance of ionic homeostasis.  相似文献   

12.
Summary Coated membranes in two types of gill epithelial cell of adult lamprey, Lampetra japonica, were studied by electron microscopy. The type 3 gill epithelial cells possess well-developed microvilli or microfolds, apical vesicles and abundant mitochondria. The cytoplasmic surface of the microvillous plasma membrane is covered by a coat of regularly spaced particles with a center-to-center distance of about 15 nm. Each particle consists of a bulbous free end, about 10 nm in diameter, and a connecting piece, about 5 nm long. Apical vesicles are covered by a surface coat which consists of fine filamentous material but lack any special coating on their cytoplasmic surface.The type 4 cells (chloride cells) are characterized by apical vesicles, abundant mitochondria and cytoplasmic tubules. These tubules possess a coat on their luminal surface which consists of spirally wound parallel rows of electron-dense materials. The rows are about 16 nm apart and wound at a pitch of about 45°. The cytoplasmic surface of these tubules does not display a special coat. These coated membranes are assumed to be the sites of active ion transport across the plasma membrane. In particular, particles in type 3 cells and linear coat materials in chloride cells may be either loci of transport enzymes or energy generating systems. Apical vesicles lack any coating on their cytoplasmic surface but a fine filamentous coat is present on their luminal surface. They contain intraluminal vesicles and are continuous with apical ends of cytoplasmic tubules.  相似文献   

13.
Recent studies show that ADH-stimulated water flow across toad bladder may be regulated at a site other than the luminal membrane. In these studies luminal membrane particle aggregate frequency has been used as a measure of luminal membrane water permeability. In fully stretched bladders the relationship between total tissue permeability and aggregate frequency is curvilinear, rather than linear. This implies a resistance in series with the luminal membrane that can become rate-limiting for water flow during ADH stimulation. The possibility that transtissue water movement is actually regulated at such a post-luminal membrane resistance is suggested by the finding that within 30 min following exposure to hormone, water flow becomes attenuated without any change in aggregate frequency. Supporting this possibility, recent data from follow-up studies suggest that the apparent water permeability per luminal membrane aggregate is not reduced with time. Finally, for bladders in which prostaglandin synthesis is inhibited (by naproxen), increases in both base-line water flow and water flow consequent to treatment with a submaximal dose of ADH (0.125 mU/ml), are much less than expected from simultaneously observed changes in luminal membrane aggregate frequency. In parallel experiments to these, moreover, direct measurements of luminal membrane water permeability from the rate of change of cell volume consequent to a transluminal membrane osmotic challenge, confirm that luminal membrane water permeability increases to the extent expected from changes in aggregate frequency. All of the data taken together argue for a post-luminal membrane barrier in toad bladder which regulates tissue permeability during ADH stimulation.  相似文献   

14.
Summary We recently described a method by which the resistance to water flow of the luminal membrane of ADH-stimulated toad bladder can be quantitatively distinguished from that of barriers lying in series with it. This method requires estimates of both total bladder water permeability (assessed by transbladder osmotic water flow at constant gradient) and luminal membrane water permeability (assessed by quantitation of the frequency of ADH-induced luminal membrane particle aggregates). In the present study we examined the effect of bladder distension on transepithelial osmotic water flow before and during maximal ADH stimulation. Base-line water flow was unaffected by bladder distension, but hormonally stimulated flow increased systematically as bladders became more distended. Distension had no effect on the frequency of ADH-induced intramembranous particle aggregates. By comparing the relationships between aggregate frequency and hormonally induced water permeability in distended and undistended bladders, we found that distension appeared to enhance ADH-stimulated water flow by decreasing the resistance of the series permeability barrier while the apparent water permeability associated with each single luminal membrane aggregate was unaffected. In that bladder distension causes tissue thinning, the series resistance limiting ADH-stimulated water flow appears to be accounted for by deformable barriers within the bladder tissue itself, probably unstirred layers of water.  相似文献   

15.
Summary Antidiuretic hormone increases the water permeability of the cortical collecting tubule and causes the appearance of intramembrane particle aggregates in the apical plasma membrane of principal cells. Particle aggregates are located in apical membrane coated pits during stimulation of collecting ducts with ADHin situ. Removal of ADH causes a rapid decline in water permeability. We evaluated apical membrane retrieval associated with removal of ADH by studying the endocytosis of horseradish peroxidase (HRP) from an isotonic solution in the lumen. HRP uptake was quantified enzymatically and its intracellular distribution examined by electron microscopy. When tubules were perfused with HRP for 20 min in the absence of ADH, HRP uptake was 0.5±0.3 pg/min/m tubule length (n=6). The uptake of HRP in tubules exposed continuously to ADH during the 20-min HRP perfusion period was 1.3±0.8 pg/min/m (n=8). HPR uptake increased markedly to 3.2±1.1 pg/min/m (n=14), when the 20-min period of perfusion with HRP began immediately after removal of ADH from the peritubular bath. Endocytosis of HRP occurred in both principal and intercalated cells via apical membrane coated pits. We suggest that the rapid decline in cortical collecting duct water permeability which occurs following removal of ADH is mediated by retrieval of water permeable membrane via coated pits.  相似文献   

16.
Summary Antidiuretic hormone (ADH) increases the apical (external facing) membrane water permeability of granular cells that line the toad urinary bladder. In response to ADH, cytoplasmic vesicles called aggrephores fuse with the apical plasma membrane and insert particle aggregates which are visualized by freeze-fracture electron microscopy. Aggrephores contain particle aggregates within their limiting membranes. It is generally accepted that particle aggregates are or are related to water channels. High rates of transepithelial water flow during ADH stimulation and subsequent hormone removal decrease water permeability and cause the endocytosis of apical membrane and aggrephores which retrieve particle aggregates. We loaded the particle aggregate-rich endocytic vesicles with horseradish peroxidase (HRP) during ADH stimulation and removal. Epithelial cells were isolated and homogenized, and a subcellular fraction was enriched for sequestered HRP obtained. The HRP-enriched membrane fraction was subjected to a density shifting maneuver (Courtoy et al.,J. Cell Biol. 98:870, 1984), which yielded a purified membrane fraction containing vesicles with entrapped HRP. The density shifted vesicles were composed of approximately 20 proteins including prominent species of 55, 17 and 7 kD. Proteins of these molecular weights appear on the apical surface of ADH-stimulated bladders, but not the apical surface of control bladders. Therefore, we believe these density shifted vesicles contain proteins involved in the ADH-stimulated water permeability response, possibly components of particle aggregates and/or water channels.  相似文献   

17.
Toad urinary bladder epithelial cells respond to the hormone ADH by increasing the water permeability of their luminal membrane. This action is mediated by insertion into the apical membrane of specific water channels. In the absence of ADH these channels appear to be present in tubular cytoplasmic vesicles as morphologically distinctive intramembrane structures called particle aggregates. ADH induces these vesicles to fuse with the apical membrane, transferring their aggregate-water channels into the apical membrane. When ADH stimulation is removed (ADH reversal), aggregates and fluid-phase markers from the mucosal bath appear in water-permeable vesicles in the cytoplasm. We have examined the fate of fluid-phase markers and aggregates with time after ADH reversal. Although the fluid-phase markers horseradish peroxidase and colloidal gold are initially found predominantly in tubular vesicles near the apical surface, by 30 min the markers were found in perinuclear multivesicular bodies (MVBs) of heterogeneous size and shape. These MVBs appear to be nonacidic since they fail to accumulate DAMP. Acid phosphatase (AcPase) was undetectable in these structures. After 60 min, labeled MVBs tended to be smaller, and some of these structures displayed DAMP accumulation and AcPase activity. By evaluation of uncleaned replicas it was possible to localize recycled aggregate-water channels with respect to internalized fluid-phase markers. Thirty minutes after retrieval from the apical surface in tubular vesicles, aggregates could be localized to both the central body and tubular projections of labeled MVBs. At 60 min following reversal, most MVBs had a reduced number of aggregates compared with 30 min, and compact structures could be identified that contained markers but no detectable aggregates. These observations show that aggregates and fluid-phase markers enter a nonacidic endosomal compartment with an MVB morphology following ADH reversal. At extended times following reversal, labeled MVBS having lysosomal characteristics and labeled MVBs having no detectable aggregates can be found, suggesting that aggregates are sorted or degraded prior to this stage.  相似文献   

18.
Summary Freeze-fracture electronmicroscopy demonstrates that vasopressin stimulation of isolated toad bladder results in a striking morphologic alteration of epithelial membrane structure. This alteration is characterized by the aggregation of intramembranous particles in orderly linear arrays at multiple sites in the luminal membranes of granular cells specifically. The size of these aggregates varies considerably, in terms of area, over a range from 0.5 to 70×10–3 m2. The median aggregate size is about 10.5×10–3 m2. Since the extent of vasopressin-associated particle aggregation, in terms of frequency of sites per area of membrane or cumulative area of membrane occupied by them, closely correlates with induced changes in transport function, as measured by osmotic water flow, the aggregates themselves appear to be of physiologic significance in the mechanism of action of vasopressin. This hypothesis is supported by the observations that sites of aggregation occur (a) in response to serosal exposure to hormone specifically, (b) independently of an osmotic gradient, and (c) following stimulation with cyclic adenosine monophosphate.  相似文献   

19.
In freeze-fractures of chromatophores of Rhodospirillum rubrum the reaction centers are seen as hexagonal arranged particles of 13 nm diameter with a density of around 5,500 particles per m2. Similar regions on the cytoplasmic membrane suggest that these parts are the prospective invagination sites.Isolated reaction centers are easily incorporated into liposomes. In freeze fractures of liposomes particles similar in shape and size, although less dense as in chromatophores are observed. In negative staining much smaller units of only 5 nm in diameter are found indicating that reaction centers occur in the membrane as tri- or tetramers. There is a strong correlation between particle density in chromatophores and titratable reaction centers remaining in these membranes after extraction of reaction centers by detergents; both values are in good agreement with the yield of reaction centers at a given detergent concentration.Abbreviations LDAO Lauryldimethylamine oxide - PF protoplasmic fracture face - EF exoplasmic fracture face  相似文献   

20.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号