首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geographical origin of Plasmodium vivax, the most widespread human malaria parasite, is controversial. Although genetic closeness to Asian primate malarias has been confirmed by phylogenetic analyses, genetic similarities between P. vivax and Plasmodium simium, a New World primate malaria, suggest that humans may have acquired P. vivax from New World monkeys or vice versa. Additionally, the near fixation of the Duffy-negative blood type (FY x B(null)/FY x B(null)) in West and Central Africa, consistent with directional selection, and the association of Duffy negativity with complete resistance to vivax malaria suggest a prolonged period of host-parasite coevolution in Africa. Here we use Bayesian and likelihood methods in conjunction with cophylogeny mapping to reconstruct the genetic and coevolutionary history of P. vivax from the complete mitochondrial genome of 176 isolates as well as several closely related Plasmodium species. Taken together, a haplotype network, parasite migration patterns, demographic history, and cophylogeny mapping support an Asian origin via a host switch from macaque monkeys.  相似文献   

2.
Examination of nucleotide diversity in 106 mitochondrial genomes of the most geographically widespread human malaria parasite, Plasmodium vivax, revealed a level of diversity similar to, but slightly higher than, that seen in the virulent human malaria parasite Plasmodium falciparum. The pairwise distribution of nucleotide differences among mitochondrial genome sequences supported the hypothesis that both these parasites underwent ancient population expansions. We estimated the age of the most recent common ancestor (MRCA) of the mitochondrial genomes of both P. vivax and P. falciparum at around 200,000-300,000 years ago. This is close to the previous estimates of the time of the human mitochondrial MRCA and the origin of modern Homo sapiens, consistent with the hypothesis that both these Plasmodium species were parasites of the hominid lineage before the origin of modern H. sapiens and that their population expansion coincided with the population expansion of their host.  相似文献   

3.
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.  相似文献   

4.
Plasmodium vivax is currently the most widespread of the four parasite species causing malaria in humans around the world. It causes more than 75 million clinical episodes per year, mainly on the Asian and American continents. Identifying new antigens to be further tested as anti-P. vivax vaccine candidates has been greatly hampered by the difficulty of maintaining this parasite cultured in vitro. Taking into account that one of the most promising vaccine candidates against Plasmodium falciparum is the rhoptry-associated protein 2, we have identified the P. falciparum rhoptry-associated protein 2 homologue in P. vivax in the present study. This protein has 400 residues, having an N-terminal 21 amino-acid stretch compatible with a signal peptide and, as occurs with its falciparum homologue, it lacks repeat sequences. The protein is expressed in asexual stage P. vivax parasites and polyclonal sera raised against this protein recognised a 46 kDa band in parasite lysate in a Western blot assay.  相似文献   

5.
The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.  相似文献   

6.
Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.  相似文献   

7.
We have investigated the evolution of Plasmodium parasites by analyzing DNA sequences of several genes. We reach the following conclusions: (1) The four human parasites, P. falciparum, P. malariae, P. ovale, and P. vivax are very remotely related to each other, so that their evolutionary divergence predates the origin of the hominids; several of these parasites became associated with the human lineage by lateral transfer from other hosts. (2) P. falciparum diverged from P. reichenowi about 8 million years ago, consistently with the time of divergence of the human lineage from the apes; a parsimonious inference is that falciparum has been associated with humans since the origin of the hominids. (3) P. malariae is genetically indistinguishable from P. brasilianum, a parasite of New World monkeys; and, similarly. (4) P. vivax is genetically indistinguishable from the New World monkey parasite P. simium. We infer in each of these two cases a very recent lateral transfer between the human and monkey hosts, and explore alternative hypotheses about the direction of the transfer. We have also investigated the population structure of P. falciparum by analyzing 10 genes and conclude that the extant world populations of this parasite have evolved from a single strain within the last several thousand years. The extensive polymorphisms observed in the highly repetitive central region of the Csp gene, as well as the apparently very divergent two classes of alleles at the Msa-1 gene, are consistent with this conclusion.  相似文献   

8.
There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.  相似文献   

9.
Several Plasmodium vivax merozoite proteins have been characterized over the past few years, including two that bind specifically to reticulocytes. Here, Mare Galinski and John Barnwell examine P. vivax merozoites and constituent molecules that are involved in host cell selection and invasion, and that also are viewed as malaria vaccine candidates. They also discuss how knowledge of the reticulocyte-binding proteins furthers the development of a conceptual framework for malaria merozoite invasion at the molecular level, not only for P. vivax, but for all species of the parasite.  相似文献   

10.
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa.  相似文献   

11.
People who live in tropical Africa, south of the Sahara, are predominantly negative for the Duffy blood-group antigen, which mediates invasion of reticulocytes by Plasmodium vivax. Recent reports of a parasite that was molecularly diagnosed as P. vivax from populations who are suspected, or known, to be Duffy negative confound a large body of evidence that states that invasion of P. vivax requires the Duffy antigen. If confirmed, one of several possible explanations is that P. vivax, which originated in Asia, is now evolving to exploit alternate invasion receptors in Africa.  相似文献   

12.
Populations of Plasmodium falciparum show striking differences in linkage disequilibrium, population differentiation and diversity, but only fragmentary data exists on the genetic structure of Plasmodium vivax. We genotyped nine tandem repeat loci bearing 2-8 bp motifs from 345 P. vivax infections collected from three Asian countries and from five locations in Colombia. We observed 9-37 alleles per locus and high diversity (He=0.72-0.79, mean=0.75) in all countries. Numbers of multiple clone infections varied considerably: these were rare in Colombia and India, but > 60% of isolates carried multiple alleles in at least one locus in Thailand and Laos. However, only one or two of the nine loci show >1 allele in many samples, suggesting that mutation within infections may result in overestimation of true multiple carriage rates. Identical nine-locus genotypes were frequently found in Colombian populations, contributing to strong linkage disequilibrium. These identical genotypes were strongly clustered in time, consistent with epidemic transmission of clones and subsequent breakdown of allelic associations, suggesting high rates of inbreeding and low effective recombination rates in this country. In contrast, identical genotypes were rare and loci were randomly associated in all three Asian populations, consistent with higher rates of outcrossing and recombination. We observed low but significant differentiation between different Asian countries (standardized FST = 0.13-0.45). In comparison, we see greater differentiation between collection locations within Colombia (standardized FST = 0.4-0.7), and strong differentiation between continents (standardized FST = 0.48-0.79). The observed heterogeneity in multiple clone carriage rates, linkage disequilibrium and population differentiation are similar in some, but not all, respects to those observed in P. falciparum, and have important implications for the design of association mapping studies, and interpretation of P. vivax epidemiology.  相似文献   

13.
It is generally accepted that Plasmodium vivax, the most widely distributed human malaria, does not cytoadhere in the deep capillaries of inner organs and thus this malaria parasite must have evolved splenic evasion mechanism in addition to sequestration. The spleen is a uniquely adapted lymphoid organ whose central function is the selective clearance of cell and other particles from the blood, and microbes including malaria. Splenomegaly is a hallmark of malaria and no other disease seems to exacerbate this organ as this disease does. Besides this major selective clearance function however, the spleen is also an erythropoietic organ which, under stress conditions, can be responsible for close to 40% of the RBC populations. Data obtained in experimental infections of human patients with P. vivax showed that anaemia is associated with acute and chronic infections and it has been postulated that the continued parasitemia might have been sufficient to infect and destroy most circulating reticulocytes. We review here the basis of our current knowledge of variant genes in P. vivax and the structure and function of the spleen during malaria. Based on this data, we propose that P. vivax specifically adhere to barrier cells in the human spleen allowing the parasite to escape spleen-clearance while favouring the release of merozoites in an environment where reticulocytes, the predominant, if not exclusive, host cell of P. vivax, are stored before their release into circulation to compensate for the anaemia associated with vivax malaria.  相似文献   

14.
Plasmodium vivax: karyotype polymorphism of field isolates   总被引:2,自引:0,他引:2  
Pulse-field gradient electrophoresis (PFG) has been applied to the karyotype analysis of Plasmodium vivax isolates obtained directly from infected patients in Sri Lanka. Detection of separated chromosomes was performed either by ethidium bromide staining of gels or by hybridization with a telomer specific probe. Each of the 15 different isolates examined exhibited a different chromosome migration pattern, indicating that a high level of polymorphism prevailed in wild populations of P. vivax. Chromosome size variation was further confirmed using a P. vivax chromosome-specific probe which also demonstrated that, in each isolate, the parasite population appeared to be homogeneous. These observations were made directly on parasites from infected blood, without the necessity for culture amplification, indicating that PFG can be used on a large scale for the epidemiological analysis of wild parasite populations.  相似文献   

15.
Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control.  相似文献   

16.
17.
18.
Plasmodium vivax is considered to be rare in the predominantly Duffy negative populations of Sub-Saharan Africa, as this red blood cell surface antigen is essential for invasion by the parasite. However, despite only very few reports of molecularly confirmed P. vivax from tropical Africa, serological evidence indicated that 13% of the persons sampled in Congo had been exposed to P. vivax. We identified P. vivax by microscopy in 8 smears from Ugandan pregnant women who had been enrolled in a longitudinal study of malaria in pregnancy. A nested polymerase chain reaction (PCR) protocol was used to detect and identify the Plasmodium parasites present. PCR analysis confirmed the presence of P. vivax for three of the women and analysis of all available samples from these women revealed clinically silent chronic low-grade vivax infections for two of them. The parasites in one woman carried pyrimethamine resistance-associated double non-synonymous mutations in the P. vivax dihydrofolate reductase gene. The three women found infected with P. vivax were Duffy positive as were nine of 68 women randomly selected from the cohort. The data presented from these three case reports is consistent with stable transmission of malaria in a predominantly Duffy negative African population. Given the substantial morbidity associated with vivax infection in non-African endemic areas, it will be important to investigate whether the distribution and prevalence of P. vivax have been underestimated in Sub-Saharan Africa. This is particularly important in the context of the drive to eliminate malaria and its morbidity.  相似文献   

19.
Of the four Plasmodium species that routinely cause malaria in humans, Plasmodium falciparum is responsible for the majority of malaria mortality and consequently gets most of the headlines. Outside Africa, however, more malaria cases are caused by its distant cousin Plasmodium vivax, resulting in a daunting morbidity and economic burden for countries across Asia and the Americas. Plasmodium life cycles are complex, but the symptoms and pathology of malaria occur during the blood phase, when merozoites recognize and invade erythrocytes, initiating a developmental programme that culminates in lysis of the erythrocyte and release of multiple daughter merozoites. P. vivax merozoites are dependent on a single host cell receptor for erythrocyte invasion, the Duffy antigen receptor for chemokines, and humans that do not express this receptor on the surface of their erythrocytes are immune to P. vivax infection. This essential receptor-ligand interaction is addressed from both the host and parasite side in two papers in this issue of Molecular Microbiology, with important implications for plans to develop a P. vivax vaccine.  相似文献   

20.
Recent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored. While the proteome of P. falciparum, the causative agent of cerebral malaria, has been extensively explored from several sources, there is limited information on the proteome of P. vivax. We have, for the first time, examined the proteome of P. vivax isolated directly from patients without adaptation to laboratory conditions. We have identified 153 proteins from clinical P. vivax, majority of which do not show homology to any previously known gene products. We also report 29 new proteins that were found to be expressed in P. vivax for the first time. In addition, several proteins previously implicated as anti-malarial targets, were also found in our analysis. Most importantly, we found several unique proteins expressed by P. vivax.This study is an important step in providing insight into physiology of the parasite under clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号