首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, the purification of DNA methyltransferase from murine P815 mastocytoma cells by immunoaffinity chromatography was described (Pfeifer, G.P., Grünwald, S., Palitti, F., Kaul, S., Boehm, T.L.J., Hirth, H.P. and Drahovsky, D. (1985) J. Biol. Chem. 260, 13787-13793). Proteins that stimulate the enzymatic activity of DNA methyltransferase have been purified from the same cells. These proteins, which partially coelute with DNA methyltransferase from DEAE-cellulose and heparin-agarose, are separated from the enzyme during the immunoaffinity purification step. A further purification of the stimulating proteins was achieved by butanol extraction, DEAE-cellulose chromatography and gel filtration on Superose 12. Two DNA methyltransferase-stimulating protein fractions were obtained. SDS-polyacrylamide gel electrophoresis of one fraction showed a single polypeptide with a molecular mass of 29 kDa. The second fraction consisted of 5 or 6 polypeptides with molecular masses 78-82 and 51-54 kDa. The proteins stimulate both de novo and maintenance activity of DNA methyltransferase about 3-fold. They enhance the methylation of any natural DNA and of poly[(dI-dC).(dI-dC)] but inhibit the methylation of poly[(dG-dC).(dG-dC)]. The purified proteins do not form a tight complex with DNA methyltransferase; however, they bind both to double-stranded and single-stranded DNA. The sequence specificity of DNA methyltransferase is obviously altered in presence of these proteins.  相似文献   

2.
A gene encoding DNA methyltransferase (methylase) FauIA of the restriction-modification system FauI from Flavobacterium aquatile (recognizing sequence 5'-CCCGC-3') was cloned in pJW vector. The latter was used for transformation of E. coli RRI cells followed by subsequent thermoinduction and biomass elaboration. Highly purified DNA methyltransferase FauIA preparation was obtained using chromatography on different sorbents. The molecular mass of the isolated enzyme of about 39 kD corresponds to its theoretical value. The enzyme was characterized by temperature and pH optima of 33 degrees C and pH 7.5, respectively. Methylation of a synthetic oligonucleotide by FauIA methylase followed by its cleavage with various restrictases and analysis of the resultant restriction fragments revealed that FauIA methylase modified the second cytosine residue in the sequence 5'-CCCGC-3'. Kinetic analysis revealed Km and catalytic constant values of 0.16 microM and 0.05 min(-1), respectively.  相似文献   

3.
DNA containing 5-azacytosine is an irreversible inhibitor of DNA(cytosine-5)methyltransferase. This paper describes the binding of DNA methyltransferase to 32P-labeled fragments of DNA containing 5-azacytosine. The complexes were identified by gel electrophoresis. The EcoRII methyltransferase specified by the R15 plasmid was purified from Escherichia coli B(R15). This enzyme methylates the second C in the sequence CCAGG and has a molecular mass of 60,000 Da. Specific binding of enzyme to DNA fragments could be detected if either excess unlabeled DNA or 0.8% sodium dodecyl sulfate was added to the reaction mixture prior to electrophoresis. Binding was dependent upon the presence of both the CCAGG sequence and azacytosine in the DNA fragment. S-Adenosylmethionine stimulated the formation of the complex. The complex was stable to 6 M urea but could be digested with pronase. These DNA fragments could be used to detect the presence of several different methyltransferases in crude extracts of E. coli. No DNA protein complexes could be detected in E. coli B extracts, a strain that contains no DNA(cytosine-5)methyltransferases. The chromosomally determined methylase with the same specificity as the purified EcoRII methylase could be detected in crude extracts of E. coli K12 strains. The MspI methylase cloned in E. coli HB101 could also be detected in crude extracts. These enzymes are the only proteins that bind azacytosine-containing DNA in crude extracts of E. coli.  相似文献   

4.
The methylcytosine-containing sequences in the DNA of Bacillus subtilis 168 Marburg (restriction-modification type BsuM) were determined by three different methods: (i) examination of in vivo-methylated DNA by restriction enzyme digestion and, whenever possible, analysis for methylcytosine at the 5' end; (ii) methylation in vitro of unmethylated DNA with B. subtilis DNA methyltransferase and determination of the methylated sites; and (iii) the methylatability of unmethylated DNA by B. subtilis methyltransferase after potential sites have been destroyed by digestion with restriction endonucleases. The results obtained by these methods, taken together, show that methylcytosine was present only within the sequence 5'-TCGA-3'. The presence of methylcytosine at the 5' end of the DNA fragments generated by restriction endonuclease AsuII digestion and the fact that in vivo-methylated DNA could not be digested by the enzyme XhoI showed that the recognition sequences of these two enzymes contained methylcytosine. As these two enzymes recognized a similar sequence containing a 5' pyrimidine (Py) and a 3' purine (Pu), 5'-PyTCGAPu-3', the possibility that methylcytosine is present in the complementary sequences 5'-TTCGAG-3' and 5'-CTCGAA-3' was postulated. This was verified by the methylation in vitro, with B. subtilis enzyme, of a 2.6-kilobase fragment of lambda DNA containing two such sites and devoid of AsuII or XhoI recognition sequences. By analyzing the methylatable sites, it was found that in one of the two PyTCGAPu sequences, cytosine was methylated in vitro in both DNA strands. It is concluded that the sequence 5'-PyTCGAPu-3' is methylated by the DNA methyltransferase (of cytosine) of B. subtilis Marburg.  相似文献   

5.
Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of 5'-CAGCAG-3'. The loss of enzyme activity was accompanied by an increase in absorbance at 240 nm. A difference spectrum of modified versus native enzyme shows the formation of N-carbethoxyhistidine that is diminished by hydroxylamine. This, along with other experiments, strongly suggests that the inactivation of the enzyme by DEPC was specific for histidine residues. Substrate protection experiments show that pre-incubating the methylase with DNA was able to protect the enzyme from DEPC inactivation. Site-directed mutagenesis experiments in which the 15 histidine residues in the enzyme were replaced individually with alanine corroborated the chemical modification studies and established the importance of His-335 in the methylase activity. No gross structural differences were detected between the native and H335A mutant MTases, as evident from CD spectra, native PAGE pattern or on gel filtration chromatography. Replacement of histidine with alanine residue at position 335 results in a mutant enzyme that is catalytically inactive and binds to DNA more tightly than the wild-type enzyme. Thus we have shown in the present study, through a combination of chemical modification and site-directed mutagenesis experiments, that His-335 plays an essential role in DNA methylation catalysed by M.EcoP15I.  相似文献   

6.
During early mouse development, there are large-scale changes in DNA methylation. These changes may be due to the availability or stability of the enzyme, DNA methyltransferase (methylase), which is responsible for maintenance of DNA methylation. A microassay for methylase activity in preimplantation embryos shows that the level of maternally inherited enzyme is extremely high in the egg and that this activity is stable for the first three cleavage divisions. However, from the 8-cell to the blastocyst stage, there is a marked and absolute decrease in enzyme activity.  相似文献   

7.
The DNA methyltransferase M-BsuE that recognizes the sequence 5'-CGCG-3' has been isolated from Bacillus subtilis strain ISE15. A 1600-fold purification of M-BsuE was achieved by column chromatography on phosphocellulose, heparin-Sepharose, and DEAE-Sepharose. DNA methyltransferase activity was monitored in the column eluants radiochemically by the transfer of tritiated methyl groups from radiolabeled S-adenosylmethionine to poly(dGdC)-poly(dGdC) DNA, a sensitive and specific substrate for M-BsuE activity. The DNA sequence specificity of this methyltransferase activity was confirmed enzymatically by demonstrating that M-BsuE-methylated DNA was selectively protected from cleavage by the restriction enzyme isoschizomers, ThaI and FnuDII. Purified M-BsuE has an apparent molecular size of 41,000-43,000 as determined by gel filtration and migrates as a 41-kDa protein in a sodium dodecyl sulfate-polyacrylamide gel. DNA methylation by M-BsuE is dependent upon the presence of S-adenosylmethionine and 2-mercaptoethanol. M-BsuE methyltransferase activity is optimal at 37 degrees C in the presence of 50 mM Tris-HCl, pH 7.8, 25 mM KCl, 6 microM S-adenosylmethionine, 5 mM 2-mercaptoethanol, and 10 mM EDTA. M-BsuE methylates the external cytidine in its recognition sequence in both linear and supercoiled DNA. A unique property of M-BsuE is its ability to methylate 5'-CGCG-3' in Z-DNA.  相似文献   

8.
The biological significance of cytosine methylation is as yet incompletely understood, but substantial and growing evidence strongly suggests that perturbation of methylation patterns, resulting from the infidelity of DNA cytosine methyltransferase, is an important component of the development of human cancer. We have developed a novel in vitro assay that allows us to quantitatively determine the DNA substrate preferences of cytosine methylases. This approach, which we call mass tagging, involves the labeling of target cytosine residues in synthetic DNA duplexes with stable isotopes, such as 15N. Methylation is then measured by the formation of 5-methylcytosine (5mC) by gas chromatography/mass spectrometry. The DNA substrate selectivity is determined from the mass spectrum of the product 5mC. With the non-symmetrical duplex DNA substrate examined in this study we find that the bacterial methyltransferase HpaII (duplex DNA recognition sequence CCGG) methylates the one methylatable cytosine of each strand similarly. Introduction of an A-C mispair at the methylation site shifts methylation exclusively to the mispaired cytosine residue. In direct competition assays with HpaII methylase we observe that the mispaired substrate is methylated more extensively than the fully complementary, normal substrate, although both have one HpaII methylation site. Through the use of this approach we will be able to learn more about the mechanisms by which methylation patterns can become altered.  相似文献   

9.
DNA methylase has been purified 405-fold from Krebs II ascites cells. The purified enzyme is homogeneous on SDS-poly acrylamide gel electrophoresis (molecular weight about 80,000) and the only product of the reaction with DNA is 5-methyl cytosine. Both native and denatured DNA are methylated by the enzyme; with calf thymus DNA the double stranded form is the better substrate but the enzyme preferentially methylates single stranded E.coli DNA even in "native" preparations. Our results do not support a mechanism whereby the enzyme methylates DNA by binding irreversibly and "walking" along it. By measuring maximum levels of methylation of DNAs from different sources we have estimated the proportion of unmethylated sites present in them. Homologous ascites DNA can be methylated, but only to about 5% of the level of the best substrate, undermethylated mouse L929 cell DNA. DNA isolated from growing cells or tissues is a better substrate than DNA from normal liver or pancreas, or from stationary cells.  相似文献   

10.
 通过硫酸铵盐析,DEAE-纤维素柱层析,磷酸纤维素亲和层析及SephadexG-100凝胶过滤法,从噬淀粉芽孢杆菌HI(Bacillus amyloliguefaciens HI)提纯了DNA甲基化酶。用聚丙烯酰胺凝胶电泳检查,已达电泳均一,比活力提高了326倍。并用聚丙烯酰胺梯度凝胶电泳和Sephadex G-100凝胶过滤法测得其天然酶的分子量为273000,又用SDS聚丙烯酰胺凝胶电泳测得它的亚基分子量为34500,故该酶有8个分子量相同的亚基。用凝胶电聚焦法测得其pI_(22 c)=9.0。  相似文献   

11.
I Taylor  D Watts    G Kneale 《Nucleic acids research》1993,21(21):4929-4935
The type I DNA modification methylase M.EcoR124I binds sequence specifically to DNA and protects a 25bp fragment containing its cognate recognition sequence from digestion by exonuclease III. Using modified synthetic oligonucleotide duplexes we have investigated the catalytic properties of the methylase, and have established that a specific adenine on each strand of DNA is the site of methylation. We show that the rate of methylation of each adenine is increased at least 100 fold by prior methylation at the other site. However, this is accompanied by a significant decrease in the affinity of the methylase for these substrates according to competitive gel retardation assays. In contrast, methylation of an adenine in the recognition site which is not a target for the enzyme results in only a small decrease in both DNA binding affinity and rate of methylation by the enzyme.  相似文献   

12.
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.  相似文献   

13.
During growth on acetate, Methanosarcina barkeri expresses catabolic enzymes for other methanogenic substrates such as monomethylamine. The range of substrates used by cells grown on acetate was further explored, and it was found that cells grown on acetate also converted dimethylsulfide (DMS) and methylmercaptopropionate (MMPA) to methane. Cells or extracts of cells grown on trimethylamine or methanol did not utilize either DMS or MMPA. During growth on acetate, cultures demethylated MMPA, producing methane and mercaptopropionate. Extracts of acetate-grown cells possessed DMS- and MMPA-dependent coenzyme M (CoM) methylation activities. The activity peaks of CoM methylation with either DMS or MMPA coeluted upon gel permeation chromatography of extracts of acetate-grown cells consistent with an apparent molecular mass of 470 kDa. A 480-kDa corrinoid protein, previously demonstrated to be a CoM methylase but otherwise of unknown physiological function, was found to methylate CoM with either DMS or MMPA. MMPA was demethylated by the purified 480-kDa CoM methylase, consuming 1 mol of CoM and producing 1 mol of mercaptopropionate. DMS was demethylated by the purified protein, consuming 1 mol of CoM and producing 1 mol of methanethiol. The methylthiol:CoM methyltransferase reaction could be initiated only with the enzyme-bound corrinoid in the methylated state. CoM could demethylate, and DMS and MMPA could remethylate, the corrinoid cofactor. The monomethylamine corrinoid protein and the A isozyme of methylcobamide:CoM methyltransferase (proteins homologous to the two subunits comprising the 480-kDa CoM methylase) did not catalyze CoM methylation with methylated thiols. These results indicate that the 480-kDa corrinoid protein functions as a CoM methylase during methanogenesis from DMS or MMPA.  相似文献   

14.
The levels of DNA methyltransferase in nuclei from 9 tumorigenic and 9 nontumorigenic cell lines were examined. In all but 2 cases, the extractable methyltransferase activity was 4-3000-fold higher in tumorigenic than in nontumorigenic cells. Tumorigenic and nontumorigenic cells from four species were grown in the presence of various concentrations (10(-8)-10(-6) M) of an inhibitor of the methylase enzyme, 5-aza-2'-deoxycytidine (5-aza-dCyd). The reduction of 5-methylcytosine content in newly replicated DNA in the presence of 5-aza-dCyd was used to determine the relative methylase activity in each cell line. In all 4 cases, tumorigenic cells required larger doses of drug to inhibit DNA methylation to the same extent as their nontumorigenic counterparts. The relative rates of incorporation of [3H]5-aza-dCyd were determined for each cell line, and tumorigenic cells were shown to incorporate equal or greater amounts of 5-aza-dCyd into DNA compared to nontumorigenic cells. These results showed that the differences in the inhibition of DNA methylation in response to 5-aza-dCyd were not due to differences in the ability of these cells to incorporate the drug. Thus, it was demonstrated by two independent methods that tumorigenic cells contained higher levels of methylating capacity than nontumorigenic cells. This overabundance of methyltransferase may alter DNA methylation patterns and affect phenotypic stability.  相似文献   

15.
《FEBS letters》1993,320(3):243-245
De novo methylation of a CG dinucleotide pair by murine DNA methyltransferase is stimulated by the presence of a single methylcytosine positioned close to the target site.  相似文献   

16.
Uracil-DNA glycosylase, the enzyme that catalyzes the release of free uracil from single-stranded and double-stranded DNA, has been purified 26,600-fold from HeLa S3 cell extracts. The enzyme preparation was essentially homogeneous as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The native enzyme is a small monomeric protein of molecular mass 29 kDa. A minor uracil-DNA glycosylase preparation was also obtained in the final chromatographic step. This preparation is homogeneous with a molecular mass of 29 kDa and may represent the mitochondrial enzyme. This report also presents a 700-fold purification of HeLa S3 cell O6-methylguanine-DNA methyltransferase. The glycosylase and methyltransferase showed very similar chromatographic properties. The report indicates that the lability of the methyltransferase upon purification may be a consequence of the total separation of the two DNA repair enzymes or of the possibility that some other stabilizing factor is involved.  相似文献   

17.
以Wistar大鼠肝为材料,确立了一个简便的纯化鼠肝DNA甲基化酶的程序,包括:细胞的超声破碎、去内源核酸、硫酸铵盐析、磷酸纤维素亲和层析、DEAE-SephadexA-50柱层析及SephadexG-150凝胶过滤。用不同浓度聚丙烯酰胺凝胶电泳和孔梯度凝胶电泳检测,纯化后的酶已达电泳均一,且酶的比活力提高112倍。以聚丙烯酰胺孔梯度凝胶电泳测得其天然酶的分子量为365kD,以SDS-聚丙烯酰胺凝胶电泳测得该酶有两种亚基,大亚基为95kD,小亚基为85kD,推测该酶由两个大亚基和两个小亚基组成。  相似文献   

18.
An inducible methyltransferase of Escherichia coli acts on O6-methylguanine in DNA by conveying the methyl group to one of its own cysteine residues. The protein has now been purified to apparent homogeneity from a constitutively expressing strain. The homogeneous methyltransferase exhibits no DNA glycosylase or endonuclease activity on alkylated DNA. Further, the methyltransferase activity is strikingly resistant to heat inactivation under reducing conditions. The protein has Mr = 18,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient and Stokes radius of the native enzyme yield Mr = 18,400. The amino acid composition of the purified protein shows 4 to 5 cysteine residues/transferase molecule. The methylated, inactive form of the transferase has an unaltered molecular weight.  相似文献   

19.
DNA methylase from HeLa cell nuclei.   总被引:10,自引:10,他引:0       下载免费PDF全文
A DNA methylase has been purified 270-fold from HeLa cell nuclei by chromatography on DEAE-cellulose, phosphocellulose, and hydroxyapatite. The enzyme transfers methyl groups from S-adenosyl-L-methionine to cytosine residues in DNA. The sole product of the reaction has been identified as 5-methylcytosine. The enzyme is able to methylate homologous (HeLa) DNA, although to a lesser extent than heterologous DNA. This may be due to incomplete methylation of HeLa DNA synthesized in vivo. The HeLa enzyme can methylate single-stranded DNA, and does so to an extent three times greater than that of the corresponding double-stranded DNA. In single-stranded M. luteus DNA, at least 2.4% of the cytosine residues can be methylated in vitro by the enzyme. The enzyme also can methylate poly (dG-dC-dG-dC) and poly (dG, dC). Bilateral nearest neighbors to the 5-methylcytosine have been determined with M. luteus DNA in vitro and HeLa DNA in vivo. The 5' neighbor can be either G or C while the 3' neighbor is always G and this sequence is, thus, p(G/C)pmCpG.  相似文献   

20.
M J Taylor  R Gantt 《Biochemistry》1979,18(23):5253-5258
A nucleic acid methylase, N2-guanine ribonucleic acid (RNA) methyltransferase, which is associated with type C RNA tumor viruses, has been purified from avian myeloblastosis virions by gel filtration on Sephadex G-200, followed by chromatography on hydroxylapatite. The molecular weight estimated by gel filtration is 220 000, and the methylase activity has a pH optimum of 7.6--7.9. Magnesium and ammonium ions both stimulate activity 1.5-fold at 9.5 mM and 0.36 M, respectively, but apparently neither is essential for activity. Both daunomycin and adriamycin, antineoplastic drugs, also increase activity 1.5-fold at 1 mM. The enzyme was purified 120-fold from the virions and the activity is partially stabilized by dithiothretiol, but large losses were sustained during 24-h dialysis. The purified enzyme retains 75% of its activity on storage at -25 degrees C for 2 months in buffer containing 50% glycerol. Escherichia coli tRNAPhe and tRNAVal are preferred substrates with methylation occurring at position 10 of E. coli tRNAPhe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号