首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fusion of neural folds to form the neural tube is a process in which presumptive contacting surfaces become adhering. An ultrastructural examination of regions of neural folds in the neurulae of three amphibian species (Hyla regilla, Rana pipiens, and Xenopus laevis), using both transmission and scanning electron microscopy, revealed that, prior to fusion, there is formation of vesicles within cells lining the neural groove, development of extracellular vesicles, changes in the surface morphology of the cells forming the fusion area, and extension of projections (filopodia) from cells lining the neural groove. The association of intra- and extracellular vesicles and filopodia with cells of the neural groove and folds suggests that these organelles may be involved in preparing the neural folds for initial contact, adhesion, and fusion. Ultrastructural differences in reaction of neural fold cell surfaces to staining by ruthenium red, colloidal iron, Alcian blue-lanthanum nitrate, and concanavalin A-hemocyanin indicate that the glycosaminoglycan compositions of these cell surfaces differ from those of presumptive epidermal cells.  相似文献   

2.
In early postnatal ontogenesis of cerebral cortex (visual area) of the white rat, a wide distribution of different types of membrane contacts have been found between developing nervous cells and their processes. The following types of contacts were observed: 1. Penetration of thin filopodia into specialized invaginations having all the features of coated vesicles; 2. Contacts of filopodia with thickened surface membrane; 3. Contacts of opposit filopodia; 4. Contacts of membranes with reciprocal invaginations alternating with filopodia or surface blebs.
These types of membrane interaction were regularly distributed along the surface of cells and their processes, and were situated in close approximation to typical tight junctions and other adhesional complexes. As a rule, filopodia were components of axon branches, and almost all invaginations were situated on plasma membranes of cell bodies or on dendrites, although sometimes there were invaginations on axon profiles and filopodia on dendrites.
It is suggested that the distribution and structural specialization of these membrane contacts reflect their participation in the process of programmed cell-to-cell recognition that precedes the formation of synaptic contact. Other reports and the current data reveal the special morphogenetic role of membrane communication in the formation and stability of integrative cell systems.  相似文献   

3.
Our object was to characterize the morphological changes occurring in pre- and postsynaptic elements during their initial contact and subsequent maturation into typical synaptic profiles. Neurons from superior cervical ganglia (SCG) of perinatal rats were freed of their supporting cells and established as isolated cells in culture. To these were added explants of embryonic rat thoracic spinal cord to allow interaction between outgrowing cord neurites and the isolated autonomic neurons. Time of initial contact was assessed by light microscopy; at timed intervals thereafter, cultures were fixed for electron microscopy. Upon contact, growth cone filopodia became extensively applied to the SCG neuronal plasmalemma and manifested numerous punctate regions in which the apposing plasma membranes were separated by only 7-10 nm. The Golgi apparatus of the target neuron hypertrophied, and its production of coated vesicles increased. Similar vesicles were seen in continuity with the SCG plasmalemma near the close contact site; their apparent contribution of a region of postsynaptic membrane with undercoating was considered to be the first definitive sign of synapse formation. Tracer work with peroxidase and ferritin confirmed that the traffic of coated vesicles within the neuronal soma is largely from Golgi region to somal surface. Subsequent to the appearance of postsynaptic density, the form and content of the growth cone was altered by the loss of filopodia and the appearance of synaptic vesicles which gradually became clustered opposite the postsynaptic density. As the synapse matured, synaptic vesicles increased in number, cleft width and content increased, presynaptic density appeared, branched membranous reticulum became greatly diminished, and most lysosomal structures disappeared. Coated vesicles continued to be associated with the postsynaptic membrane at all stages of maturation. The incorporation of Golgi-derived vesicles into discrete regions of the cell membrane could provide the mechanism for confining specific characteristics of the neuronal membrane to the synaptic region.  相似文献   

4.
Cell structure, cell adhesion, and stalk formation have been examined by electron microscopy in the colonial flagellate, Cephalothamnium cyclopum. Each cell is obconical or spindle-shaped, pointed posteriorly and truncated anteriorly. The cell membrane is underlain by epiplasm 0.1 μm thick in the posterior region, but bands of microtubules support the anterior region which is differentiated into a flagellar pocket, oral apparatus and contractile vacuole. Each of 2 flagella, joined a short way above their bases by an interflagellar connective, has a paraxial rod and mastigonemes. One flagellum is free and is important in food gathering while the other is recurrent and lies in a shallow groove on the ventral cell surface but projects posteriorly into the stalk. The basal bodies of these flagella are bipartite structures connected by a pair of striated rootlets with accessory microtubular fibers. The oral apparatus consists of a funnel-shaped buccal cavity and cytostome. It is supported by helical and longitudinal microtubules and also has nearby striated and microtubular fibers. Possible roles of associated oral vesicles in relation to ingestion are discussed. A reticulate mitochondrion houses a massive kinetoplast which has a fibrillar substructure resembling that of dinoflagellate chromosomes. Adjacent flagellates adhere by laminate extensions of their posterior regions and attach by their recurrent flagella to a communally secreted stalk composed of finely fibrillar material. This study indicates that Cephalothamnium belongs in the order Kinetoplastida, and has many features in common with members of the family Bodonidae.  相似文献   

5.
The ultrathin structure of the amoeboid flagellate Thaumatomonas coloniensis Wylezich et al. has been studied. The cell is surrounded by somatic scales forming on the surface of the mitochondria. The heterodynamic flagella emerge from the small flagellar pocket. Both flagella are covered by pineal scales and thin twisted mastigonemes. The kinetosomes lie parallel to each other. The transitional zone of the flagella carries the thin-walled cylinder. The transversal plate of the flagella is above the cell surface. The flagellar root system consists of three microtubular bands and a fibrillar rhizoplast. The vesicular nucleus and Golgi apparatus are of the usual structure. The mitochondria contain tubular cristae. The extrusive organelles (kinetocysts) contain amorphous material and a capsule; they are located in cytoplasm. The capsule consists of a muff and cylinder. Osmiophilic bodies of various shapes contain crystalloid inclusions. The pseudopodia capturing the bacteria emerge from the ventral groove. The groove is armored by the two longitudinal groups of the close situated microtubules. Microbodies and symbiotic bacteria have not been discovered. The resemblance of Th. coloniensis with other thaumatomonads is discussed.  相似文献   

6.
ABSTRACT. A new heterotrophic flagellate has been discovered from sites in Maryland, Michigan and Wyoming. The flagellate resides within a lorica constructed of a meshwork of intertwined fibrils with the outer surface invested with nail-shaped spines. The organism "reclines" within the lorica with its ventral aspect directed upward, and has two heterodynamic flagella, neither of which bears mastigonemes. One flagellum is directed upward and the other is arched over the ventral aspect of the body. Ingestion of bacteria takes place at the left posterior half of the cell. The organism is anchored to the lorica on the right posterior side by a series of regularly spaced cytoplasmic bridges and at the left anterior of the cell by a cytoplasmic appendage similar to the "languette cytoplasmique" found in some bicosoecids. The right side of the cell is raised into a flattened lip with the outer margin reinforced by a ribbon of microtubules. The new flagellate has mitochondria with tubular cristae and lacks a Golgi. A new genus is created to accommodate both the new flagellate described herein and Histiona campanula Penard. A new family is proposed to include the new genus and Histiona.  相似文献   

7.
The leading tips of elongating nerve fibers are enlarged into "growth cones" which are seen in tissue culture to continually undergo changes in conformation and to foster numerous transitory slender extensions (filopodia) and/or a veillike ruffling sheet. After explantation of 1-day-old rat superior cervical ganglia (as pieces or as individual neurons), nerve fibers and tips were photographed during growth and through the initial stages of aldehyde fixation and then relocated after embedding in plastic. Electron microscopy of serially sectioned tips revealed the following. The moving parts of the cone, the peripheral flange and filopodia, contained a distinctive apparently filamentous feltwork from which all organelles except membranous structures were excluded; microtubules were notably absent from these areas. The cone interior contained varied forms of agranular endoplasmic reticulum, vacuoles, vesicles, coated vesicles, mitochondria, microtubules, and occasional neurofilaments and polysomes. Dense-cored vesicles and lysosomal structures were also present and appeared to be formed locally, at least in part from reticulum. The possible roles of the various forms of agranular membranous components are discussed and it is suggested that structures involved in both the assembly and degradation of membrane are present in the cone. The content of these growing tips resembles that in sensory neuron growth cones studied by others.  相似文献   

8.
The synovial intima from the antebrachiocarpal joint of 4-month-old calves was between 1 and 3 cells in thickness and did not have a basal lamina. Numerous areas of the intimal matrix were in direct contact with the joint lumen. The synovial membrane was comprised mainly of A-type synoviocytes usually located adjacent to the joint lumen. These cells were characterized by numerous filopodia (or lamellipodia), large, empty-appearing vacuoles, numerous lysosomes, large vacuoles containing granular material separated from the vacuolar membrane by a radiolucent band, and coated micropinocytotic vesicles. Smooth micropinocytotic vesicles were seen only rarely in these cells. In contrast, B-type cells had few filopodia, numerous smooth micropinocytotic vesicles, few coated micropinocytotic vesicles, a well-developed Golgi apparatus and rough endoplasmic reticulum, mitochondria that were longer and had a denser matrix than that of A cell mitochondria, and surprisingly, only few maturing or fully formed secretory granules. A distinct intermediate (C or AB) type synoviocyte could not be unequivocally identified. Desmosome-like structures were present between synoviocytes, although it was considered questionable if these were true intercellular junctions. No other junctions were present.  相似文献   

9.
Sensory afferents in the leech are labeled with both constitutive and developmentally regulated glycosylations (markers) of their cell adhesion molecules (CAMs). Their constitutive mannose marker, recognized by Lan3-2 monoclonal antibody (mAb), mediates the formation of their diffuse central arbors. We show that, at the ultrastructural level, these arbors consist of large, loosely organized axons rich with filopodia and synaptic vesicles. Perturbing the mannose-specific adhesion of this first targeting step leads to a gain in cell-cell contact but a loss of filopodia and synaptic vesicles. During the second targeting step, galactose markers divide afferents into different subsets. We focus on the subset labeled by the marker recognized by Laz2-369 mAb. Initially, the galactose marker appears where afferents contact central neurons. Subsequently it spreads proximally and distally, covering the entire afferent surface. Afferents now gain cell-cell contact, with central neurons and self-similar afferents, but lose filopodia and synaptic vesicles. Extant synaptic vesicles prevail where afferents are apposed to central neurons. These neurons develop postsynaptic densities and en passant synapses are forming. Perturbing the galactose-specific adhesion of this second targeting step causes a loss of cell-cell contact but a gain in filopodia and synaptic vesicles, essentially returning afferents to the first targeting step. The transformation of afferent growth, progressing from mannose- to galactose-specific adhesion, is consistent with a change from cell-matrix to cell-cell adhesion. By performing opposing functions in a temporal sequence, constitutive and developmentally regulated glycosylations of CAMs collaborate in the synaptogenesis of afferents and the consolidation of self-similar afferents.  相似文献   

10.
The protozoon Naegleria gruberi is able to carry out amoeboid locomotion at the water-air interface in a manner indistinguishable from that exhibited on solid substrata with the production of focal contacts and associated filopodia. The speed of locomotion at this interface can be modulated by changes in electrolyte concentrations; these speed changes are identical to those observed at a water-glass interface. The nature of the water-air interface is discussed leading to the hypothesis that surface tension alone could provide suitable properties for the adhesion and translocation of amoebae at this interface without necessitating specific, absorbed molecules. The temporary swimming flagellate stage of Naegleria is able to dock at the interface, make stable adhesions to it, and revert to the amoeboid phenotype. Conversely, amoebae resident at the water-air interface can transform to swimming flagellates and escape into the bulk liquid phase. We report the presence of Naegleria amoebae in the surface microlayers of natural ponds; thus, in freshwater bodies there may be active shuttling of Naegleria amoebae from the benthos to the surface microlayers by means of the non-feeding, swimming flagellate phenotype. The public health implication of this behaviour in the case of the pathogenic relative, Naegleria fowleri, is discussed.  相似文献   

11.
The blastoporal groove of the early gastrula of the treefrog, Hyla regilla, was examined with the electron microscope. The innermost extension of the groove is lined with invaginating flask- and wedge-shaped cells of entoderm and mesoderm. The distal surfaces of these cells bear microvilli which are underlain with an electron-opaque layer composed of fine granular material and fibrils. The dense layer and masses of vesicles proximal to it fill the necks of the cells. In flask cells bordering the forming archenteron the vesicles are replaced by large vacuoles surrounded by layers of membranes. The cells lining the groove are tightly joined at their distal ends in the region of the dense layer. Proximally, the cell bodies are separated by wide intercellular spaces. The cell body, which is migrating toward the interior of the gastrula, contains the nucleus plus other organalles and inclusions common to amphibian gastrular cells. A dense layer of granular material, vesicles, and membranes lies beneath the surface of the cell body and extends into pseudopodium-like processes and surface undulations which cross the intercellular spaces. A special mesodermal cell observed in the dorsal lining of the groove is smaller and denser than the surrounding presumptive chordamesodermal cells. A long finger of cytoplasm, filled with a dense layer, vesicles and membranes, extends from its distal surface along the edge of the groove, ending in a tight interlocking with another mesodermal cell. Some correlations between fine structure and the mechanics of gastrulation are discussed, and a theory of invagination is proposed, based on contraction and expansion of the dense layer and the tight junctions at distal cell surfaces.  相似文献   

12.
The chitinivorous ciliate Ascophrys, an ectosymbiont of the shrimp Palaemon serratus, is enclosed by a thick cyst wall except for a ventral hiatus exposing a circular area of exoskeleton to the interior of the cyst. The exoskeleton underlying the cyst wall remains intact, but the circular area of exoskeleton is dissolved enzymatically and ingested. The feeding ciliate forms a cavity in the exoskeleton into which it sinks. Its complex oral apparatus resembles a pump encircled by cytoplasm containing Golgi and high concentrations of coated vesicles that join pellicular pores between cilia. The ingestive apparatus is formed of microtubular lamellae that originate in the midplane of the body, descend toward a coated membrane on the surface, and ascend again as a lamellar lining to a complex food tube that ends in the middle of the body surrounded by food vacuoles. The cytoplasm enclosed between the descending lamellae and the food tube is crowded with membrane organelles that recycle as food vacuole membranes at the coated membrane. We hypothesize that vacuoles containing dissolved exoskeleton are drawn up into the oral tube and are released into the cytoplasm at the terminus of the tube, where their contents are concentrated and excess vacuolar membrane collapsed into membrane organelles.  相似文献   

13.
The biology, morphology, and ultrastructure of the freshwater rapacious flagellate Colponema aff. loxodes, which attacks bodonids and chrysomonads, are studied. The flagellate is characterized by three-membrane alveolar pellicle, vesicular nucleus, two heterodynamous flagella, two microtubule bands which armor the longitudinal groove, and mitochondria with tubular cristae. Toxicysts (thread-organelles) are found in the cytoplasm. The posterior flagellum is characterized by the proximal fold. Micropores are completely absent. After being caught, the prey is taken into the longitudinal groove. Vegetative swimming cells are present in the life cycle. No reproduction or latent cysts are found. The taxonomical position of Colponema aff. loxodes is discussed in comparison with other colponemids and protists.  相似文献   

14.
We report the ultrastructure and phylogenetic position of a free-living heterotrophic flagellate, Tsukubamonas globosa n. gen., n. sp. This flagellate was isolated from a pond in the University of Tsukuba, Japan. Under light microscopy, the spherical vegetative cells were naked and highly vacuolated, and always swam with rotating motion. Electron microscopic observations revealed that T. globosa possessed a ventral feeding groove, which is one of the hallmark characteristics of the supergroup Excavata. The position of T. globosa was unresolved in the small subunit ribosomal RNA phylogeny. On the other hand, a multigene phylogeny using α-tubulin, β-tubulin, actin, heat shock protein 90, and translation elongation factor 2 robustly united T. globosa with members of the "Discoba" clade of Excavata, composed of jakobids, euglenozoans, and heteroloboseans, although the precise position of T. globosa in this clade remained unresolved. Our detailed morphological comparisons elucidated that T. globosa possessed a novel set of morphological features, and could not be classified into any taxa in the Discoba clade. Instead we classified T. globosa into Tsukubamonadidae n. fam. under Tsukubamonadida n. ord.  相似文献   

15.
The ultrastructure of the Noctiluca miliaris Suriray from Southest Asian waters which contains the green flagellate, Pedinomonas noctilucae (Subrahmanyan) Sweeney, is in all major respects similar to that of the European strain. New details of the thecal vesicles, pellicle and underlying microtubules are presented. The possibility that the lipid vesicles are identical with the strongly phase-retarding bodies in the surface cytoplasm, some of which are “microsources” of bioluminescence, is suggested.  相似文献   

16.
Summary Clathrin-coated vesicles in rodent (rat and mouse) liver distribute into three distinct populations based on measurements of vesicle diameter. The first population consists of 60–80 nm vesicles found almost exclusively within the Golgi apparatus region. The second population is of 100–160 nm coated vesicles located within 100–500 nm of the cell surface. A third population of coated vesicles of intermediate diameter (ca. 90 nm) is present both at the Golgi apparatus and at the cell surface. We speculate that clathrin and clathrin-coated vesicles within the region of the Golgi apparatus and of the cell surface exist in two recycling populations. The third population of vesicles of intermediate diameter could represent a shuttle to link the two major compartments.  相似文献   

17.
The ultrastructure of the amoeboid flagellate Thaumatomonas zhukovi sp. is presented. The cell is covered by cell body scales that formed on the surface of mitochondria. Capturing bacteria, the pseudopodia emerge from the ventral groove, which is supported by two longitudinal microtubular bands. The heterodynamic flagella emerge from the small flagellar pocket. Both flagella are covered by cone-shaped scales and thin twisted mastigonemes. The transitional zone of the flagella contains a thin-walled cylinder. The transversal plate of the flagella rises above the cell surface. The kinetosomes lie parallel to each other. The flagellar root system consists of three microtubular bands and a fibrillar rhizoplast. The vesicular nucleus and the Golgi apparatus have typical structures. The cytoplasm contains microbodies and food vacuoles. Mitochondria contain tubular cristae. Extrusive organelles (kinetocysts), which contain amorphous material and a capsule, were found in the cytoplasm. The capsule consists of a theca and a cylinder. The resemblance of Thaumatomonas zhukovi to other thaumatomonads is discussed.  相似文献   

18.
Coated pits trap cell surface receptors and mediate their internalization. Once internalized, many receptors recycle back to the cell surface. When recycled receptors are inserted into the plasma membrane, they move until they are again trapped in coated pits. The mechanisms for moving receptors from their insertion sites to coated pits are unknown. Unaided diffusion as the transport mechanism is consistent with the observed kinetics of receptor recycling. Another candidate for the transport mechanism is convection. For receptors that recycle to random positions on the cell surface, or to restricted regions about coated pits, we assess the importance of convective flow in the transport of receptors to coated pits. First we consider local flows set up by the formation of coated pits and their transformation into coated vesicles. As coated pits form and round into coated vesicles, surrounding membrane is drawn inward, creating flows directed toward the coated pit centers. We show that unless the lifetime of a coated pit is very short, 10 s or less, such local flows have a negligible effect on the time it takes receptors to reach coated pits. We also show that they are unlikely to be the mechanism that keeps receptors that have reached coated pits trapped within coated pits until they are internalized. Finally we calculate the mean time tau for a diffusing receptor to reach a coated pit in the presence of membrane flow that is constant in magnitude and direction, as may occur on moving cells. We show that for typical membrane flow velocities, tau can be reduced significantly from its value in the absence of flow. For example, a velocity v = 2.8 micron/min cuts the mean transport time in half.  相似文献   

19.
This study deals with ultrastructural analysis of interneuronal and neuromuscular relations in a representative of archiannelid Nerilla sp. with primitive intraepidermal type of the nervous system. A particular attention has been paid to the area of ventral ciliate groove and the associated site of epidermis. In the ciliate groove, sensory and motor cilia are revealed and described. Sites of axonal terminals of the sensory cells supplied with cilia are noted in the epidermal nerve plexus. Epidermal-muscular cells and nerve terminals on them are revealed. Various interneuronal contact variants both of non-synaptic and of typically synaptic types are described. An attention is drawn to the rare presence of contacts of the gap junction type among interneuronal contacts in Nerilla sp. In sufficiently differentiated synapses of the chemical type, phenomena of exocytosis are described. There are shown specific features of innervation of longitudinal (somatic) musculature of the neril-lid body, including input of synaptic vesicles into the basal lamina substance and their translocation into the depth of the muscular layer.  相似文献   

20.
The surface distribution of the scavenger receptors for acetylated low-density lipoprotein (acetyl-LDL) and their endocytic behavior were studied by the direct immunoperoxidase method using monomeric conjugates of horseradish peroxidase with Fab' antibody raised against LDL. The receptors were demonstrated to be distributed diffusely on the surface membrane of cultured peritoneal macrophages, with preferential localization in coated pit regions. With temperature shift from 4 degrees C to 37 degrees C, acetyl-LDL bound to the surface membrane rapidly disappeared, but became detectable in coated vesicles or lysosomes. Further incubation in the presence of acetyl-LDL revealed lipid vacuoles devoid of a limiting membrane in the cytoplasm, transforming macrophages into typical foam cells. These data suggest that the binding of acetyl-LDL to its receptors triggers the clustering of the receptors into the coated pit regions through which acetyl-LDL is endocytosed by coated vesicles to be degraded in lysosomes with subsequent intracellular accumulation of cholesterol esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号