首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activity of myofibrillar adenosinetriphosphatase was demonstrated histochemically at a fine structural level in isolated, unfixed or hydroxyadipaldehyde-fixed cardiac myofibrils in the rat, using a lead precipitation technique and either Ca++ or Mg++ as activating ion. Activity in relaxed myofibrils was found in the A band, but not the H, I, or Z bands. Deposits of final product frequently exhibited an axial periodicity of near 365 A, and bore a close relationship to filaments within the A band. Several patterns of distribution occurred in contracted myofibrils. In myofibrils which had shortened to the point of disappearance of the I band, final product was distributed throughout the sarcomere, except for the unreactive Z band. A second type of distribution occurred in strongly contracted fibers in which there was intensification of activity in the center of the sarcomere. These findings are discussed in the light of the recent morphological evidence and it is suggested that the distribution of final product is consistent with localization of enzyme activity to the cross-bridges between the thick and thin filaments.  相似文献   

2.
In this study we tested the hypothesis that reduced myofibrillar ATPase activities in end-stage heart failure are associated with a redistribution of myosin isozymes. Cardiac myofibrils were isolated from left ventricular free wall from normal human hearts and hearts at end-stage heart failure caused by coronary artery diseases, cardiomyopathy or immunological rejection. The hearts had been excised in preparation for a heart transplant. Myofibrillar Ca2–-dependent Mg-ATPase and myosin Ca- and KEDTA-ATPase activities were compared. Possible changes in myosin isozyme distribution in the diseased heart were investigated using polyacrylamide gel electrophoresis of native myosin in the presence of pyrophosphate. Significant reduction in myofibrillar Ca2+-dependent Mg-ATPase with no changes in the sensitivity of the myofibrils to Ca+ was observed in heart with coronary artery diseases (25.2 to 27.1% at pCa 5.83 to pCa 5.05), cardiomyopathy (21.1 to 25.5% at pCa 5.41 to pCa 5.05), and in the immunologically rejected heart (18.4 to 22.8% at pCa 5.41 to pCa 5.05). Significantly lower myosin Ca2+-ATPase was observed with coronary artery diseases only and myosin K-EDTA activities did not differ in diseased and normal hearts. Polyacrylamide gel electrophoresis of native myosin from the normal and three models of end-stage heart failure revealed two distinct bands in the human left ventricle and one diffuse band in the human right atria. No apparent differences in myosin isoenzyme pattern were observed between the normal and diseased hearts. Further evaluation is needed to clarify the ATPase nature of the two bands.  相似文献   

3.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

4.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

5.
In order to compare the role of the Ca2+-receptive protein (troponin), in the characteristic myofibrillar contractile response of chicken fast and slow skeletal muscles, the troponin in both kinds of myofibrils were partially exchanged, under slightly acidic conditions. The Ca2+- or Sr2+-activation of the ATPase of fast (or slow) skeletal myofibrils hybridized with slow (or fast) skeletal troponin profiles were also investigated. The results indicated that the Ca2+- or Sr2+-affinity of the myofibrillar ATPase activity were related to the species of troponin. This procedure for replacing troponin in myofibrils under physiological conditions in thus considered to be useful for the study of the Ca2+-regulatory mechanism in myofibrillar contraction.  相似文献   

6.
The intracellular distribution of calcium has been studied in the mucosa of the avian shell gland, a tissue which transports large quantities of calcium during discrete time intervals. Ca45 was administered to hens either in a single dose followed by sacrifice 5 min later or in repeated doses over an extended period followed by sacrifice 2 hr or 24 hr after the last injection. Subcellular fractions were isolated by differential centrifugation and analyzed for Ca45. The Ca45 was located principally in the particulate fractions; the concentration (CPM Ca45/mg N) was highest in the mitochondrial fraction. Comparisons of (1) the Ca45 distribution in shell gland cells with that of liver cells, (2) the alterations which occur due to the phase of the egg laying cycle, (3) the effects due to the time elapsed since the last injection of Ca45, and (4) the Ca45 distribution of the short term experiments with that of the long term experiments revealed that the mitochondrial fraction of the shell gland appeared to be active in the movement of calcium. The microsomal fraction showed increased values in CPM Ca45/mg N when calcification was occurring, which may indicate that the subcellular components of this fraction have a role in calcium transport. The nuclear and supernatant fractions did not seem to be involved in the transport process. The implications of these results concerning the manner by which calcium may be controlled on a cellular level in this system are discussed.  相似文献   

7.
The mechanism and control of protein degradation in cells are quite mysterious. We investigated the change of protease activities in animals fed a vitamin E-deficient diet. The Ca2+-activated protease activity was not significantly changed in vitamin E-deficient rats during the 45 weeks of the experiment. The cathepsin B activity was increased in those animals. Electron microscopic observation on the muscle of the vitamin E-deficient rats showed destruction of myofibrils at the Z-line, narrowness of myofibrils, and dispersed myofibrils. The M-line, which is known to disappear with cathepsin L treatment, was clearly observed. The phagocytosis of muscle cells by macrophages was also observed. These results show that the abnormal myofibril protein degradation in muscle tissue of vitamin E-deficient rats is not only due to the activation of macrophages and the increment of lysosomes in muscle cells, but also due to the protease which can destroy the myofibril at the Z-line. It may be a Ca2+-activated protease.  相似文献   

8.
The relation between ATPase rate and substrate concentration was investigated for myofibrils with varying amounts of added HMM. There was a biphasic, 3 to 5-fold increase in ATPase in the absence of Ca++. In the absence of added HMM, the peak activity occurred at ≤ 0.1 mM MgATP. With increasing concentrations of HMM, the position and magnitude of the ATPase peak shifted to larger substrate concentrations and higher rates. The cofactor activity of regulated actin in myofibrils is activated to a similar degree by Ca++ as by HMM (rigor links). SDS gel electrophoretic patterns of myofibrils mixed with HMM indicated the soluble HMM binds to myofibrils at 0.1 mM MgATP and is dissociated at higher MgATP concentrations. Thus, in well-regulated myofibrils in the absence of Ca++ actin cofactor activity can be activated by rigor complexes.  相似文献   

9.
The ability of CASF (Ca2+-activated sarcoplasmic factor), a proteolytic enzyme that has recently been isolated from muscle and that removes Z-disks from myofibrils, to remove soluble material from myofibrils and to alter the Mg2+-modified ATPase activity of myofibrils was studied. A new assay involving determination of soluble material released from myofibrils was developed to measure CASF activity quantitatively. Optimum pH and optimum Ca2+ concentration for CASF activity as determined by this new assay were 7.0 and 1 mm, respectively. Proteolytic activity of CASF on myofibrils was prevented completely by excess EDTA. CASF treatment of myofibrils at CASF to myofibril ratios of 1: 20 by weight for 30 min caused a 20~25% increase in Mg2+-modified ATPase activity. CASF treatment for 360 min under these same conditions caused a decrease in Mg2+-modified ATPase activity at the highest ionic strengths used in this study (46.7 and 66.7 mm KCI). The increase in Mg2+-modified ATPase activity may originate from CASF degradation of troponin, whereas the decrease in Mg2+- modified ATPase activity may be due to CASF destruction or release of α-actinin from myofibrils. Digestion of myofibrils by CASF causes in the myofibrils (degradation of Z-lines, increase of ATPase activity) that are very similar to the changes caused by postmortem storage.  相似文献   

10.
Instrumentation has been developed for the rapid electronic sizing of large numbers of myofibrils. The response of myofibrils in the presence of ATP to changes in Ca++ concentration was examined. Shortening of myofibrils upon addition of Ca++ was accompanied by an increased protein effective volume of approximately 10-40%. Whereas ATPase activation and increased turbidity of myofibrils upon addition of Ca++ were reversible upon subsequent addition of EGTA, the shortening and swelling were irreversible. It is proposed that the swelling may result from the breaking of hydrophobic bonds within myosin. The ATPase activity and turbidity are measures of the input, while the shortening and swelling are measures of the output of a coupled nonequilibrium process; failure of reversal of the output indicates an uncoupling under the experimental conditions.  相似文献   

11.
Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca2+ sensitivity and increases the rate of Ca2+ release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca2+-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca2+ regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myofibrils. In nontransgenic mouse myofibrils, the Ca2+ sensitivity of force was increased, the fast relaxation phase rate constant, kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unP = 1.8 ± 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice had a 2.4-fold higher Ca2+ sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca2+ sensitivity and relaxation parameters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unP = 0.88 ± 0.17, p = 0.39). Nevertheless, modulation of the Ca2+ sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistinguishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range. The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respectively. Our results confirm that troponin I phosphorylation specifically alters the Ca2+ sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphorylation-dependent response without affecting other parameters of contraction, including length-dependent activation and the response to EMD57033.  相似文献   

12.
We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase Ca2+ sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased Ca2+ sensitivity. Effects of DPI 201–106 were, however, different. Only at the 10–6 M concentration was a significant increase in myofibrillar ATPase calcium sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts, DPI 201–106 caused a concentration-dependent increase in myofibrillar ATPase Ca2+ sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively. DPI 201–106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar Ca2+ sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the Ca2+ activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.  相似文献   

13.
Summary Commercially available concanavalin A binds Ca2+ with high apparent affinity. In order to dissociate concanavalin A stimulated Ca2+ uptake (defined as an increased association of 45Ca2+ with cells) in rat splenocytes and Ca2+ binding to cell-bound concanavalin A, conditions were developed to remove more than 75% of the bound concanavalin A. Under these conditions concanavalin A treated cells showed a considerable increase in 45Ca2+ uptake over control. The concanavalin A stimulated uptake of 45Ca2+ occurred within minutes, and required concentrations of concanavalin A which promoted [3H]thymidine uptake into these cells. Succinyl concanavalin A was less potent in promoting Ca2+ uptake than concanavalin A. Sodium periodate inhibited Ca2+ uptake at concentrations which promoted 3H-thymidine incorporation into splenocytes.It is concluded that con canavalin A promotes Ca2+ uptake which is not due to binding of 45Ca2+ to concanavalin A. Although the concanavalin A-promoted Ca2+ uptake occurs at lectin concentrations that cause lymphocyte proliferation as measured by 3H-thymidine incorporation, the role of Ca2+ in this event remains unclear.  相似文献   

14.
Pathalogical changes in murine skeletal muscle cells induced by ACL (Agkistrodon contortix laticinctus, Broad-Banded Copperhead) myotoxin in vivo were compared to pathological changes induced by an influx of Ca2+ and other ions into cut skeletal muscle cells in vitro in the absence of myotoxin. In vivo, ACL myotoxin induced a rapid myonecrosis characterized by densely clumped myofibrils in the cytoplasm. In vitro, this pathological change was not produced by incubating skeletal muscle cells in Ca2+ concentrations as high as 200 mM, whereas skeletal muscle cells incubated in concentrations of 150 mM and 300 mM NaCl contained densely clumped myofibrils similar in morphology to muscle cells damaged by ACL myotoxin in vivo. Treatments of 300 mM KCl did not produce densely clumped myofibrils in muscle cells. These results suggest that an influx of Na+, possibly through disrupted regions of sarcolemma, be may primarily responsible for the pathological changes, including clumped myofibrils, induced by ACL myotoxin in vivo. However, an influx of extracellular Ca2+ which has been proposed to produce densely clumped myofibrils in muscle cells damaged by other snake venom myotoxins, may not be responsible for this pathological change since extracellular Ca2+ concentrations much higher than physiological levels did not produce this change in skeletal muscle cells in vitro.  相似文献   

15.
Previously we showed in an in situ porcine model that the thiadiazinone derivative [+]EMD 60263, a Ca2+ sensitizer without phosphodiesterase III inhibitory properties, increased contractility more profoundly in stunned than in non-stunned myocardium. This finding was consistent with the observed leftward shifts of the pCa2+/Mg2+-ATPase curves of isolated myofibrils induced by [+]EMD 60263. The aim of the present investigation was to study the possible involvement of protein kinase C in the mechanism of reduced Ca2+ responsiveness of myofilaments during stunning. No differences were observed in the maximal activity of the Ca2+-stimulated Mg2+-ATPase and in the pCa50 of myofibrils isolated from non-stunned and stunned myocardium. After phosphorylation with [gamma-32P]-ATP and excess of purified rat brain protein kinase C, the myofibrils were separated on sodiumdodecylsulphate-polyacrylamide gelectrophoresis and the32 P incorporation counted by the Molecular Imager. Ca2+/phosphatidylserine/sn-1,2 diolein-dependent32 P incorporation catalyzed by excess of purified rat brain protein kinase C in C-protein, TnT and TnI subunits did not show any differences between myofibrils from non-stunned and stunned myocardium. However, protein kinase C-induced phosphorylation of myofibrils isolated from ventricular myocardium of sham-operated pigs resulted in a marked leftward shift of the pCa50 from 6.03 ± 0.04 to 6.44 ± 0.06 (p < 0.05), while porcine heart cyclic AMP-dependent protein kinase-induced phosphorylation resulted in an expected small rightward shift to 5.97, although statistical significance was not reached. Protein kinase C-induced phosphorylation also stimulated (80%) the maximal myofibrillar Mg2+-ATPase activity. [+]EMD 60263 (3 µM) produced a leftward shift of the myofibrillar pCa2+/Mg2+-ATPase curve which was unaffected by prior protein kinase C-induced phosphorylation. In conclusion, the findings with isolated myofibrils from myocardium of anaesthetized open-chest pigs indicate that protein kinase C might be involved in the mechanism of reduced Ca2+ responsiveness of myofilaments in stunned myocardium. However, at this stage no differences could be found between the maximal activity of the Ca2+-stimulated Mg2+-ATPase, the pCa50 and the degree of phosphorylation of myofibrils isolated from stunned and non-stunned myocardium.  相似文献   

16.
Two hypertrophic cardiomyopathy-associated cardiac troponin I (cTnI) mutations, R146G and R21C, are located in different regions of cTnI, the inhibitory peptide and the cardiac-specific N terminus. We recently reported that these regions may interact when Ser-23/Ser-24 are phosphorylated, weakening the interaction of cTnI with cardiac TnC. Little is known about how these mutations influence the affinity of cardiac TnC for cTnI (KC-I) or contractile kinetics during β-adrenergic stimulation. Here, we tested how cTnIR146G or cTnIR21C influences contractile activation and relaxation and their response to protein kinase A (PKA). Both mutations significantly increased Ca2+ binding affinity to cTn (KCa) and KC-I. PKA phosphorylation resulted in a similar reduction of KCa for all complexes, but KC-I was reduced only with cTnIWT. cTnIWT, cTnIR146G, and cTnIR21C were complexed into cardiac troponin and exchanged into rat ventricular myofibrils, and contraction/relaxation kinetics were measured ± PKA phosphorylation. Maximal tension (Tmax) was maintained for cTnIR146G- and cTnIR21C-exchanged myofibrils, and Ca2+ sensitivity of tension (pCa50) was increased. PKA phosphorylation decreased pCa50 for cTnIWT-exchanged myofibrils but not for either mutation. PKA phosphorylation accelerated the early slow phase relaxation for cTnIWT myofibrils, especially at Ca2+ levels that the heart operates in vivo. Importantly, this effect was blunted for cTnIR146G- and cTnIR21C-exchanged myofibrils. Molecular dynamics simulations suggest both mutations inhibit formation of intra-subunit contacts between the N terminus and the inhibitory peptide of cTnI that is normally seen with WT-cTn upon PKA phosphorylation. Together, our results suggest that cTnIR146G and cTnIR21C blunt PKA modulation of activation and relaxation kinetics by prohibiting cardiac-specific N-terminal interaction with the cTnI inhibitory peptide.  相似文献   

17.
A study of the intracellular transport of calcium in rat heart   总被引:4,自引:0,他引:4  
The distribution of in vivo injected 45Ca++ in the subcellular fractions of rat heart has been studied. Most of the radioactivity of the cell was found to be associated with the subcellular organelles; only a small fraction was recovered in the soluble phase. Mitochondria contained the greatest part of the total radioactivity associated with the subcellular organelles. After injection of 45Ca++ the specific activity of the mitochondrial calcium pool was several times higher than that of the calcium of the sarcoplasmic reticulum. Pentachlorophenol has been administered to rats to uncouple oxidative phosphorylation in heart mitochondria in vivo and its effect on the distribution of 45Ca++ in the heart studied. Under these conditions, it has been found that mitochondria contained much less 45Ca++ than the controls; this decrease was paralleled by an increase of the radioactivity associated with the microsomes and with the final supernatant. Experiments in which 45Ca++ was added to heart homogenates at 0° indicated that 45Ca++ also became bound to mitochondria and the other subcellular structures at 0°. However, PCP had no effect on the distribution of radioactivity among the subcellular fractions under these conditions. The results suggest that (1) energy-linked movements of Ca++ take place in mitochondria of the intact rat heart, (2) a part of the uptake of 45Ca++ by mitochondria does not depend on metabolism, and, (3) the movements of Ca++ in heart mitochondria in vivo are probably more active than those in the sarcoplasmic reticulum.  相似文献   

18.
Addition of the mitogenic lectin concanavalin A to rat spleen cells results in a small increase in the steady-state Ca2+ content of the cells. 45Ca2+ fluxes were measured under conditions where artifacts due to Ca2+ binding to concanavalin A could be excluded. Both 45Ca2+ influx into and efflux from these cells are significantly activated by the lectin. If 45Ca2+ is added 30 min after concanavalin A the rate of influx is further enhanced. The increase in 45Ca2+ influx correlates well with binding of concanavalin A to the cells. At low concentrations (optimal mitogenic) of the lectin (1 and 3 μg/ml) no significant increase in 45Ca2+ influx occurs but an increase in 45Ca2+ efflux is still observed. The results suggest that concanavalin A binding to the cell surface causes an increase in Ca2+ influx into the cells and that activation of Ca2+ efflux occurs as a response to an increase in the cytosolic Ca2+ activity. Thus, Ca2+ may well play a role in triggering lymphocyte activation.  相似文献   

19.
The sarcoplasmic reticulum (SR) regulates the levels of cytoplasmic free Ca2+ ions in muscle cells. Calsequestrin is a major Ca2+ -storing protein and is localized at special sites in the SR. To investigate the development of calsequestrin-positive SR and its interaction with the cytoskeleton, we examined the distribution of calsequestrin in cultured cardiomyocytes from newborn rats by immunofluorescence with anticalsequestrin and antitubulin antibodies and rhodamine-phalloidin. In frozen sections of neonatal rat heart, anticalsequestrin immunostaining was apparent as cross-striations at Z-lines. When newborn cardiomyocytes were isolated, calsequestrin-positive SR was disorganized and was apparent as small vesicles beneath the sarcolemma, whereas myofibrils accumulated in the center of the cells. As the cells spread in culture, calsequestrin-positive vesicles spread to the periphery of the cytoplasm, becoming associated with the developing myofibrils. In mature cells, calsequestrin was closely associated with myofibrils, showing cross-striations at the Z-lines. Double-labeling using anticalsequestrin and antitubulin antibodies demonstrated that the distribution of calsequestrin-positive structures was similar to that of the microtubular arrays. When the microtubules were depolymerized by nocodazole at an early stage, the extension of the SR to the cell periphery was inhibited. In mature cardiomyocytes, nocodazole appeared not to affect the distribution of the SR. These results indicate that the calsequestrin-positive SR in cardiomyocytes is organized at the proper sites of myofibrils during myofibrillogenesis and that the microtubules might serve as tracts for the transport of components of the SR. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Sarcoplasmic reticulum fragments (S.R.F.) were isolated from skeletal and heart muscles. These fragments were found to take up Ca++ very actively from media. When monophasic square waves were passed through the S.R.F. suspension, the Ca++ uptake by S.R.F. was decreased. When the suspension was stimulated electrically after the Ca++ was taken up by S.R.F., the initiation and the cessation of the stimulation were followed by the release and re-uptake of Ca++ by S.R.F., respectively. The degree of inhibition of the Ca++ uptake as well as of the Ca++ release by electrical stimulation was dependent on the voltage and the frequency of stimulation. The presence of inorganic phosphate or oxalate modified the influence of electrical stimulation on the release and the uptake of Ca++ by S.R.F. Attempts were made to observe the release of Ca++ by electrical stimulation from unfractionated sarcoplasmic reticulum remaining in myofibers, and the interaction of the released Ca++ with myofibrils in vitro. For this purpose, the glycerol-extracted fiber was selected as a muscle model, since it contains both sarcoplasmic reticulum and myofibrils. It was found that electrical stimulation of skeletal and heart glycerol-extracted fibers resulted in the contraction of fibers. It appeared that the contraction of glycerol fibers by electrical stimulation was caused by the Ca++ release from sarcoplasmic reticulum by stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号