首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor-betas (TGF-betas) are among the most widespread and versatile cytokines. Here, we first provide a brief overview of their molecular biology, biochemistry, and signaling. We then review distribution and functions of the three mammalian TGF-beta isoforms, beta1, beta2, and beta3, and their receptors in the developing and adult nervous system. Roles of TGF-betas in the regulation of radial glia, astroglia, oligodendroglia, and microglia are addressed. Finally, we review the current state of knowledge concerning the roles of TGF-betas in controlling neuronal performances, including the regulation of proliferation of neuronal precursors, survival/death decisions, and neuronal differentiation.  相似文献   

2.
This review briefly describes the cellular distribution and documented roles of the transforming growth factor (TGF)-beta isoforms TGF-beta2 and -beta3 in the central and peripheral nervous system. TGF-beta2 and -beta3 are coexpressed in developing radial glial and mature astroglial and Schwann cells, as well as in subpopulations of differentiated neurons, most prominently in cortical, hippocampal, and brainstem/spinal cord motor neurons. In vitro studies have suggested a number of potential, physiologically relevant functions for TGF-betas including regulation of astroglial cell proliferation, expression of adhesion molecules, survival promoting roles for neurons in combination with established neurotrophic factors, and differentiative actions on neurons.  相似文献   

3.
TGF-beta and the regulation of neuron survival and death.   总被引:5,自引:0,他引:5  
Transforming growth factor-betas (TGF-betas) constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation, and tissue remodeling. In the developing nervous system, TGF-beta2 and -beta3 occur in radial and astroglial cells as well as in many populations of postmitotic, differentiating neurons. TGF-beta1 is restricted to the choroid plexus and meninges. In addition to functions related to glial cell maturation and performances, TGF-beta2 and -beta3 are important regulators of neuron survival. In contrast to neurotrophic factors, as for example, neurotrophins, TGF-betas are most likely not neurotrophic by themselves. However, they can dramatically increase the potency of select neurotrophins, fibroblast growth factor-2, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor (GDNF). In the case of GDNF, we have shown that GDNF fails to promote the survival of highly purified neuron populations in vitro unless it is supplemented with TGF-beta. This also applies to the in vivo situation, where antibodies to all three TGF-beta isoforms fully prevent the trophic effect of GDNF on axotomized, target-deprived neurons. In addition to the TGF-beta isoforms -beta2 and -beta3, other members of the TGF-beta superfamily are expressed in the nervous system having important roles in embryonic patterning, cell migration, and neuronal transmitter determination. We have cloned and expressed a novel TGF-beta, named growth/differentiation factor-15 (GDF-15). GDF-15 is synthesized in the choroid plexus and released into the CSF, but also occurs in all regions investigated of the developing and adult brain. GDF-15 is a potent trophic factor for developing and 6-OHDA-lesioned midbrain dopaminergic neurons in vitro and in vivo, matching the potency of GDNF.  相似文献   

4.
The TGF-betas are a family of pleiotropic cytokines that mediate diverse effects including the regulation of cell cycle progression, apoptosis, tissue remodelling and epithelial-mesenchymal transition (EMT). These diverse effects allow the TGF-betas to play multiple and even opposing roles in different contexts during embryonal development, tissue homeostasis and cancer progression. We recently reported that the protein tyrosine phosphatase Pez is a novel inducer of TGF-beta signaling, regulating EMT and organogenesis in developing zebrafish embryos, and leading to TGF-beta mediated EMT when over-expressed in vitro in epithelial MDCK cells. A number of mutations in Pez have been shown to be associated with breast and colorectal cancers, although the effect of these mutations on Pez function and their contribution to cancer progression remains unclear. Our finding that Pez regulates TGF-beta signaling is therefore of interest not only in the context of identifying a novel upstream regulator of TGF-beta signaling, but also in implicating the dysregulation of TGF-beta signaling as a possible link between Pez mutation and cancer progression. Here we discuss the implications of our research, in the context of dysregulation of TGF-beta signaling in cancer and other human pathologies.  相似文献   

5.
TGF-beta and cancer   总被引:2,自引:0,他引:2  
The relationships between transforming growth factor-beta (TGF-beta) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-beta can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-beta acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-betas make their appearance in the tumor microenvironment and the tumor cells escape from TGF-beta-dependent growth arrest. In many cases, this resistance to TGF-beta is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-beta receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-beta-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-beta-sensitivity to TGF-beta-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

6.
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-beta type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-betas in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-betas, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-beta-mediated regulation of lateral branching. Loss of responsiveness to TGF-betas in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-betas play an important role in the stromal-epithelial interactions required for branching morphogenesis.  相似文献   

7.
Smad7 is required for the development and function of the heart   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGF-beta) family members, including TGF-betas, activins, and bone morphogenetic proteins, exert diverse biological activities in cell proliferation, differentiation, apoptosis, embryonic development, and many other processes. These effects are largely mediated by Smad proteins. Smad7 is a negative regulator for the signaling of TGF-beta family members. Dysregulation of Smad7 is associated with pathogenesis of a variety of human diseases. However, the in vivo physiological roles of Smad7 have not been elucidated due to the lack of a mouse model with significant loss of Smad7 function. Here we report generation and initial characterization of Smad7 mutant mice with targeted deletion of the indispensable MH2 domain. The majority of Smad7 mutant mice died in utero due to multiple defects in cardiovascular development, including ventricular septal defect and non-compaction, as well as outflow tract malformation. The surviving adult Smad7 mutant mice had impaired cardiac functions and severe arrhythmia. Further analyses suggest that Smad2/3 phosphorylation was elevated in atrioventricular cushion in the heart of Smad7 mutant mice, accompanied by increased apoptosis in this region. Taken together, these observations pinpoint an important role of Smad7 in the development and function of the mouse heart in vivo.  相似文献   

8.
TGF beta signalling and its role in tumour pathogenesis   总被引:10,自引:0,他引:10  
  相似文献   

9.
Transforming growth factors beta (TGF-betas) are multifunctional cytokines that modulate cell growth, differentiation and apoptosis. Numerous effects initiated by TGF-betas in vitro have been described, but the role of TGF-beta targeting and activation under physiological conditions has gained very little attention and understanding. We report here that apoptosis of human umbilical vein endothelial cells (HUVECs) is accompanied by release of truncated large latent TGF-beta complexes from the pericellular matrix followed by activation of TGF-beta. The activation of TGF-beta during apoptosis was accompanied by enhanced secretion of beta1-LAP protein, and apoptotic HUVECs acquired the capacity to induce the release of latent TGF-beta-binding proteins (LTBPs) from extracellular matrices. Activated TGF-beta, in turn, attenuated apoptotic death of HUVECs. Current results indicate that the activation of TGF-beta accompanies the apoptosis of HUVECs, and may play a protective feedback role against apoptotic cell death. The results suggest a role for TGF-beta as a putative extracellular modulator of apoptosis.  相似文献   

10.
Transforming growth factor-beta: an important mediator of immunoregulation   总被引:3,自引:0,他引:3  
Transforming growth factor-beta (TGF-beta) is synthesized and secreted by a wide variety of cells, including cells of the immune system. Lymphocytes and monocytes possess high affinity TGF-beta receptors and the addition of TGF-beta to in vitro cell cultures results in significant modulation of immune function. TGF-beta inhibits the proliferation of thymocytes, T cells, B cells, and natural killer cells. Additionally, it inhibits certain differentiative functions of lymphocytes including a marked inhibition of immunoglobulin production by human B lymphocytes. TGF-beta has dichotomous actions on monocytes. It is a potent chemoattractant for monocytes and induces interleukin 1 mRNA expression while inhibiting generation of reactive oxygen intermediates and monocyte killing. Evidence is accumulating that TGF-beta regulates immune function in vivo and that overproduction of TGF-beta may be associated with immunosuppression.  相似文献   

11.
The TGF-beta family of growth factors contains a large number of homologous proteins, grouped in several subfamilies on the basis of sequence identity. These subgroups can be combined into three broader groups of related cytokines, with marked specificities for their cellular receptors: the TGF-betas, the activins and the BMPs/GDFs. Although structural information is available for some members of the TGF-beta family, very little is known about the way in which these growth factors interact with the extra-cellular domains of their multiple cell surface receptors or with the specific protein inhibitors thought to modulate their activity. In this paper, we use the evolutionary trace method [Lichtarge et al. (1996) J. Mol. Biol., 257, 342-358] to locate two functional patches on the surface of TGF-beta-like growth factors. The first of these is centred on a conserved proline (P(36) in TGF-betas 1-3) and contains two amino acids which could account for the receptor specificity of TGF-betas (H(34) and E(35)). The second patch is located on the other side of the growth factor protomer and surrounds a hydrophobic cavity, large enough to accommodate the side chain of an aromatic residue. In addition to two conserved tryptophans at positions 30 and 32, the main protagonists in this potential binding interface are found at positions 31, 92, 93 and 98. Several mutagenesis studies have highlighted the importance of the C-terminal region of the growth factor molecule in TGF-betas and of residues in activin A equivalent to positions 31 and 94 of the TGF-betas for the binding of type II receptors to these ligands. These data, together with our improved knowledge of possible functional residues, can be used in future structure-function analysis experiments.  相似文献   

12.
Growth regulators such as epidermal growth factor (EGF) and type beta transforming growth factor (TGF-beta) regulate the synthesis and secretion of certain proteins by cells in culture. The secretion pattern of each cell line and the effect of growth regulators on the secretion pattern are unique. EGF increased the secreted and intracellular levels of mitogen-regulated protein (MRP) and major excreted protein (MEP) by Swiss 3T3 cells. MRP is related by sequence to prolactin. MEP is a thiol protease located intracellularly in the lysosomes. EGF also selectively induced a 52,000-dalton mitogen-induced protein (MIP 52) secreted by human fibroblasts. Two types of TGF-betas were tested for their effects on the expression of secreted proteins in mouse and human fibroblasts: TGF-beta from human platelets and a growth inhibitor (GI/TGF-beta) secreted by BSC-1 cells. Each selectively decreased the levels of the two secreted proteins induced by growth factors in mouse embryo 3T3 cells and one secreted protein induced by growth factors in human fibroblasts. Platelet TGF-beta and GI/TGF-beta also induced one 48,000-dalton protein secreted by human fibroblasts. Synthesis of DNA and the incorporation of [35S]methionine into total protein in Swiss 3T3 cells were not affected by platelet TGF-beta or GI/TGF-beta. Thus, the inhibitory effect of platelet TGF-beta on the synthesis and secretion of these three proteins is due to a specific effect of platelet TGF-beta on the regulation of MRP and MEP that does not interfere with the ability of EGF to stimulate DNA or protein synthesis.  相似文献   

13.
Transforming growth factor-betas (TGF-betas) are multifunctional cytokines that exist in 3 isoforms in mammals. The TGF-betas are ubiquitously expressed and all isoforms are secreted as biologically inactive precursors called latent TGF-beta (L-TGF-beta). L-TGF-betas are generally not effective molecules because they are unable to interact with their receptors. However, the removal of or conformational change of the precursor protein called the latency associated peptide (LAP) results in the generation of biologically active TGF-beta. In vitro active TGF-beta has many biological effects but from a clinical point of view one of the most recognized associations of aberrant TGF-beta production is with diseases characterized by enhanced connective tissue synthesis. Recently a number of observations in the context of fibrotic disorders suggest mechanisms of activation of L-TGF-beta1 in vivo. The recognition of mechanisms that activate L-TGF-beta1 in vivo offers the possibility of interfering with the activation of L-TGF-beta1 for therapeutic purposes.  相似文献   

14.
Many members of transforming growth factor-beta (TGF-beta) superfamily, including not only TGF-beta, but also the activins, and bone morphogenetic proteins (BMPs), have been demonstrated to affect the development and function of immune cells. From the proliferation and differentiation of pluripotent stem cells, to the activation and migration of mature lymphoid and myeloid lineages, the TGF-betas have been recognized for their ability to modulate the manner in which such cells respond to stimuli in their environment. Recent studies involving disruption of this pathway in genetically engineered mice now emphasize the importance of this activity and validate functional models predicted by in vitro studies. Phenotypic differences between mice harboring mutations in the TGF-beta1 ligand and the TGF-beta receptor-activated signaling intermediate Smad3 are presented and serve to highlight the valuable role of these in vivo genetic tests of function.  相似文献   

15.
Using a dominant-negative mutant receptor (DNR) approach in transgenic mice, we have functionally inactivated transforming growth factor-beta (TGF-beta) signaling in select epithelial cells. The dominant-negative mutant type II TGF-beta receptor blocked signaling by all three TGF-beta isoforms in primary hepatocyte and pancreatic acinar cell cultures generated from transgenic mice, as demonstrated by the loss of growth inhibitory and gene induction responses. However, it had no effect on signaling by activin, the closest TGF-beta family member. DNR transgenic mice showed increased proliferation of pancreatic acinar cells and severely perturbed acinar differentiation. These results indicate that TGF-beta negatively controls growth of acinar cells and is essential for the maintenance of a differentiated acinar phenotype in the exocrine pancreas in vivo. In contrast, such abnormalities were not observed in the liver. Additional abnormalities in the pancreas included fibrosis, neoangiogenesis and mild macrophage infiltration, and these were associated with a marked up-regulation of TGF-beta expression in transgenic acinar cells. This transgenic model of targeted functional inactivation of TGF-beta signaling provides insights into mechanisms whereby loss of TGF-beta responsiveness might promote the carcinogenic process, both through direct effects on cell proliferation, and indirectly through up-regulation of TGF-betas with associated paracrine effects on stromal compartments.  相似文献   

16.
17.
Adducin is a cytoskeletal protein having regulatory roles that involve actin filaments, functions that are inhibited by phosphorylation of adducin by protein kinase C. Adducin is hyperphosphorylated in nervous system tissue in patients with the neurodegenerative disease amyotrophic lateral sclerosis, and mice lacking β-adducin have impaired synaptic plasticity and learning. We have found that Drosophila adducin, encoded by hu-li tai shao (hts), is localized to the post-synaptic larval neuromuscular junction (NMJ) in a complex with the scaffolding protein Discs large (Dlg), a regulator of synaptic plasticity during growth of the NMJ. hts mutant NMJs are underdeveloped, whereas over-expression of Hts promotes Dlg phosphorylation, delocalizes Dlg away from the NMJ, and causes NMJ overgrowth. Dlg is a component of septate junctions at the lateral membrane of epithelial cells, and we show that Hts regulates Dlg localization in the amnioserosa, an embryonic epithelium, and that embryos doubly mutant for hts and dlg exhibit defects in epithelial morphogenesis. The phosphorylation of Dlg by the kinases PAR-1 and CaMKII has been shown to disrupt Dlg targeting to the NMJ and we present evidence that Hts regulates Dlg targeting to the NMJ in muscle and the lateral membrane of epithelial cells by controlling the protein levels of PAR-1 and CaMKII, and consequently the extent of Dlg phosphorylation.  相似文献   

18.
Loss of Smad3 modulates wound healing   总被引:16,自引:0,他引:16  
  相似文献   

19.
Transforming growth factor (TGF)-betas are powerful cytokines that are secreted as inactive (latent) precursors into the extracellular space. To exert their pleiotropic functions, latent TGF-betas require activation. This requisite restricts TGF-beta signaling to tissues that express TGF-beta-activating proteins such as the adhesion molecule alphavbeta6 integrin. Recent work has uncovered the molecular mechanism by which alphavbeta6 integrin activates latent TGF-beta. Latent-TGF-beta-binding protein 1 has been identified as being the major component of this process, and the integrin-interacting region has been mapped to a poorly conserved sequence stretch called the hinge region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号