首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vanadate inhibited the formation of proton gradient and membrane potential as well as Ca2+ transport by everted membrane vesicles from Mycobacterium phlei, with half-maximal inhibition occurring at 5 to 14 microM. That this is due to the inhibition of the proton-translocating ATPase was suggested by the observation that the inhibition described above occurred only when the processes were driven by the hydrolysis of ATP but not when energized by the oxidation of succinate and NADH. Furthermore, vanadate did indeed inhibit ATP hydrolysis by these membrane vesicles. Although the inhibition of ATP hydrolysis could be demonstrated only in the presence of high concentrations (e.g. 11 mM) of Mg2+, this was presumably due to the fact that we were measuring the sum of ATP hydrolysis by both coupled and partially uncoupled enzymes. This is the first reported effect of vanadate on bacterial proton-translocating ATPase.  相似文献   

3.
Binding studies of various nucleotides to the purified coupling factor-latent ATPase from Mycobacterium phlei have been carried out using gel filtration, equilibrium dialysis, and ultrafiltration methods. The purified latent ATPase binds 3 mol of ADP per mol of the enzyme with an apparent dissociation constant of 68 muM. Binding of nucleotides occurred in the decreasing order: ADP, epsilon-ATP, epsilon-ADP, UDP, adenyl-5'-yl imidodiphosphate (AMP-P(NH)P), IDP, and adenosine 5'-(alpha,beta-methylene)diphosphate (AdoP(CH2)P). AMP-P(NH)P inhibits both soluble (Ki = 77 muM) and membrane-bound latent ATPase activity. However, AMP-P(NH)P does not affect oxidative phosphorylation in membrane vesicles of M. phlei. AMP-P(NH)P exhibits one binding site per molecule of the enzyme with a dissociation constant of 71 muM. After trypsin treatment of the enzyme, the binding of ADP decreases 35%, while AMP-P(NH)P binding remains unchanged. Moreover, AMP-P(NH)P binding was not displaced by ADP. Studies with sulfhydryl agents showed that, in contrast to AMP-P(NH)P, binding of at least 1 mol of ADP requires the participation of sulfhydryl groups. The results indicate that AMP-P(NH)P and ADP do not share a common binding site and that the latent ATPase enzyme has separate sites for ATP hydrolysis and ATP synthesis.  相似文献   

4.
Proton translocating ATPase (F0F1) from bovine heart mitochondria was reconstituted into planar phospholipid bilayers, and its electrogenicity was directly demonstrated. The F0F1 ATPase was solubilized using 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid (CHAPS) as a detergent followed by sucrose density gradient centrifugation according to the method originally described by McEnery et al. for rat liver mitochondria (McEnery et al. (1986) J. Biol. Chem. 259, 4642-4651), with minor modifications. The purified ATPase was reconstituted into proteoliposomes and then reconstituted into planar phospholipid bilayers by the modified fusion method (Hirata et al. (1986) J. Biol. Chem. 261, 9839-9843). A short-circuit current of up to 0.4 pA was induced by adding ATP, and this current was suppressed by the F1 ATPase inhibitor NaN3 or by a specific mitochondrial F0 inhibitor, oligomycin. The direction of the current corresponded to the flow of positive charges from the F1 side to the F0 side. All these facts clearly demonstrate that the mitochondrial F0F1 ATPase was successfully reconstituted into planar phospholipid bilayers, and the current was generated by the ATPase.  相似文献   

5.
6.
7.
Latent ATPase, located on the inner surface of protoplast ghosts of Mycobacterium phlei, was unmasked either by trypsin or an impermeable form of trypsin, ethylene maleic anhydride-trypsin. Density gradient experiments showed that the ghost preparations remained intact following trypsin treatment. Evidence was obtained that 125I-trypsin failed to penetrate the ghost membranes. Thus, attempts were made to determine whether the ATPase molecule in the ghost membranes is accessible from the outer surface. Treatment of protoplast ghosts and trypsin-treated ghosts with 125I by the lactoperoxidase method resulted in the labeling of ATPase only in the trypsin-treated ghost preparations. The antibody to latent ATPase inhibited ATPase activity in trypsin-treated ghosts. The changes in the fluorescence polarization of diphenyl hexatriene indicated that trypsin treatment of the ghost membranes resulted in an increase in membrane fluidity. These studies suggest that the latent ATPase moiety has undergone translocation to the outer surface or it became accessible to trypsin digestion from the outer surface of the membranes as a result of removal of some proteins covering ATPase molecule in the membranes.  相似文献   

8.
9.
The effect of trypsin treatment on the solubilized coupling factorlatent ATPase from Mycobacterium phlei was studied. Maximal stimulation of ATPase activity by trypsin is accompanied by a decrease of about 20,000 daltons in molecular weight and a complete loss of the ability to rebind to depleted membranes. There is also conversion of the A subunit of the latent enzyme to an A″ form via an A′ intermediate. The increase in ATPase activity, loss of coupling factor activity, and loss of rebinding capacity changed in a different manner in response to partial degrees of trypsin activation, indicating that each of these functions may have a different structural requirement.  相似文献   

10.
11.
A sucrose gradient fraction was used to characterize the tonoplast ATPase from storage tissue of the sugarcane plant ( Saccharum sp. var. H57–5175). Marker enzyme analyses and characterization of low-density vesicles isolated on a sucrose gradient were consistent with a highly enriched tonoplast fraction. ATPase and proton transport activities were both substantially inhibited by nitrate (80%), but very little by vanadate (10%), indicating a high titer of tonoplast compared to plasma-membrane vesicles in the fraction. Sensitivity toward other inhibitors, as well as ion effects, correlated closely among ATPase and proton translocation activities. Although the vesicles in this fraction showed good proton translocating activity there was no indication that ATP stimulated sucrose uptake in this tonoplast population.  相似文献   

12.
13.
Notions on the molecular mechanisms of anesthesia are presented. The chemical characteristics are given for main representatives of certain groups of local anesthetics with peculiarities of their membrane-tropic action mentioned. The effect of local anesthetics on the synaptic transmission, membrane enzymes, ion transport through the cell membranes is considered simultaneously with the anesthesia phenomenon on the basis of the data available in literature and results of the authors' investigations.  相似文献   

14.
Interaction of N,N'-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30-65% inactivation over a concentration range of 5-50 microM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5 X 10(5) M-1 X min(-1). The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

15.
16.
Trypsin treatment of solubilized coupling factor-latent ATPase from Mycobacterium phlei alters its subunit structure and functional properties. This coupling factor exhibits ATPase activity following trypsin treatment. Concurrently, both the ability of the enzyme to rebind to membranes depleted of coupling factor and its capacity for coupled phosphorylation are lost. The native alpha (64 000 dalton) subunit undergoes limited proteolytic digestion, and the delta (14 000 dalton) subunit is partially lost. During the course of tryptic proteolysis, the coupling factor molecule may exist in one of ten unique structural states (e.g. the native, ATPase-inactive molecule exists in the ααα state). Rigorous analysis of the experimental data by theoretical modeling provided information concerning the intermediate structural states leading to the fully ATPase-activated α″α″α″ state under different conditions of trypsin treatment. The theoretical models of structure-function relationships that best-represented the experimental data predicted that the native coupling factor molecule contains three copies of the α (64 000 dalton) form of the alpha subunit, that the α″ (58 000 dalton) alpha subunit species contributes maximally and the α′ (61 000 dalton) form about half-maximally to ATPase activity, that membrane rebinding ability is proportional to the number of native alpha subunits in the enzyme, and that at least one native α subunit/molecule is required for full expression of coupled phosphorylation. These results indicate an essential role for the alpha subunit in the regulation of ATPase activity and in the ability of the solubilized coupling factor to rebind to depleted membranes.  相似文献   

17.
Plasma membranes were prepared from red beet (Beta vulgaris L.) storage tissue by partition in an aqueous two-phase system. A highly active proton-translocating ATPase was purified from these membranes by lysophosphatidylcholine extraction and glycerol density gradient centrifugation. The ATPase activity was inhibited by vanadate or dicyclohexyl carbodiimide, but was insensitive to azide, nitrate and molybdate at concentrations which inhibit the F1ATPase, the tonoplast ATPase, and acid phosphatase. Inhibition by vanadate was consistent with a non-competitive mechanism, with Ki = 10 microM. The Km for Mg-ATP was about 1 mM, magnesium ions were required, and the activity was stimulated by KCl and by lysophosphatidylcholine. The optimal pH was 6.5. The molecular mass by gel filtration in the presence of 2 g/liter octyl glucoside was 600 kDa, while dodecyl sulfate gel electrophoresis gave a polypeptide molecular mass of 100 kDa. After blotting onto nitrocellulose, the purified enzyme did not bind concanavalin A, although a concanavalin A-binding peptide of the plasma membrane runs to nearly the same position on the gel and showed some tendency to co-purify with the ATPase. Phospholipid vesicles into which the purified ATPase had been incorporated by the freeze-thaw technique showed vanadate-sensitive, ATP-dependent proton uptake. When the ATPase was reconstituted into lipid membranes at high protein to lipid ratios and incubated with ATP, two-dimensionally crystalline arrays of protein molecules were formed.  相似文献   

18.
1. The effect was studied of local anesthetics (tetracaine, dibucaine, procaine and xylocaine) on the forward and the backward reactions of the calcium pump of skeletal muscle sarcoplasmic reticulum. 2. The inhibition of the rate of calcium uptake, the rate of calcium-dependent ATP splitting and the rate of calcium-dependent ATP-ADP phosphate exchange by sarcoplasmic reticulum in the presence of the above drugs is at least partially due to the inhibition of the phosphoprotein formation from ATP. 3. The rate of the ADP-induced calcium release from sarcoplasmic reticulum and the rate of ATP synthesis driven by the calcium efflux are inhibited on account of a reduction of the phosphoprotein formation by orthophosphate. 4. The phosphorylation of calcium transport ATPase by either ATP or orthophosphate is diminished by the local anesthetics owing to a reduction in the apparent calcium affinity of sarcoplasmic reticulum emmbranes on the outside and on the inside, respectively. 5. The drug-induced calcium efflux from calcium-preloaded sarcoplasmic reticulum vesicles, a reaction not requiring ADP, is probably not mediated by calcium transport ATPase.  相似文献   

19.
20.
Pea root microsomal vesicles have been fractionated on a Dextran step gradient to give three fractions, each of which carries out ATP-dependent proton accumulation as measured by fluorescence quenching of quinacrine. The fraction at the 4/6% Dextran interface is enriched in plasma membrane, as determined by UDPG sterol glucosyltransferase and vanadate-inhibited ATPase. The vanadate-sensitive phosphohydrolase is not specific for ATP, has a Km of about 0.23 millimolar for MgATP, is only slightly affected by K+ or Cl and is insensitive to auxin. Proton transport, on the other hand, is more specific for ATP, enhanced by anions (NO3 > Cl) and has a Km of about 0.7 millimolar. Auxins decrease the Km to about 0.35 millimolar, with no significant effect on the Vmax, while antiauxins or weak acids have no such effect. It appears that auxin has the ability to alter the efficiency of the ATP-driven proton transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号