首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A better understanding of the nature of the interaction between various cationic lipids used for gene delivery and DNA would lend insight into their structural and physical properties that may modulate their efficacy. We therefore separated the protonation and binding events which occur upon complexation of 1:1 DOTAP (1,2-dioleoyl-3-trimethylammonium propane):DOPE (1,2-dioleoylphosphatidylethanolamine) liposomes to DNA using proton linkage theory and isothermal titration calorimetry (ITC). The enthalpy of DOPE protonation was estimated as -45.0+/-0.7 kJ/mol and the intrinsic binding enthalpy of lipid to DNA as +2.8+/-0.3 kJ/mol. The pK(a) of DOPE was calculated to shift from 7.7+/-0.1 in the free state to 8.8+/-0.1 in the complex. At physiological ionic strength, proton linkage was not observed upon complex formation and the buffer-independent binding enthalpy was +1.0+/-0.4 kJ/mol. These studies indicate that the intrinsic interaction between 1:1 DOTAP/DOPE and DNA is an entropy-driven process and that the affinities of cationic lipids that are formulated with and without DOPE for DNA are controlled by the positive entropic changes that occur upon complex formation.  相似文献   

2.
The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.  相似文献   

3.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

4.
This study was aimed to investigate if and to what extent there is an interplay between lipoplex physicochemical properties and plasmid promoter type affecting transfection efficiency in vitro. To reduce the number of variables only one cell type (NIH3T3 cells), one gene (human growth hormone), one cationic lipid (DOTAP) in a plasmid >85% in supercoiled form, and the same medium conditions were used. The variables of the physicochemical properties included presence and type of helper lipid (DOPE, DOPC, or cholesterol, all in 1:1 mole ratio with DOTAP), size and lamellarity of the liposomes used for lipoplex preparation (large unilamellar vesicles, LUV, versus multilamellar vesicles, MLV), and DNA(-)/cationic lipid(+) charge ratio, all containing the same human growth hormone but differing in their promoter enhancer region. Two of the promoters were of viral origin: (a) SV40 promoter (simian virus early promoter) and (b) CMV promoter (cytomegalovirus early promoter); two were of mammalian cell origin: (c) PABP promoter (human poly(A)-binding protein promoter) and (d) S16 promoter (mouse ribosomal protein (rp) S16 promoter). Transfection studies showed that, irrespective of promoter type, large (> or =500 nm) MLV were superior to approximately 100 nm LUV; the extent of superiority was dependent on liposome lipid composition (larger for 100% DOTAP and DOTAP/DOPE than for DOTAP/DOPC and DOTAP/cholesterol). The optimal DNA(-)/DOTAP(+) charge ratio for all types of lipoplexes used was 0.2 or 0.5 (namely, when the lipoplexes were positively charged). Scoring the six best lipoplex formulations (out of 128 studied) revealed the following order: pCMV (DOTAP/DOPE) > pSV (DOTAP/DOPE)=pCMV(DOTAP/cholesterol)=pS16 (100% DOTAP)=pS16 DOTAP/DOPE > pCMV (DOTAP/DOPC). The lack of trivial consistency in the transfection efficiency score, the pattern of transfection efficiency, and statistical analysis of the data suggest that there is cross-talk between promoter type and lipoplex lipid composition, which may be related to the way the promoter is associated with the lipids.  相似文献   

5.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA-) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

6.
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.  相似文献   

7.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

8.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

9.
We report on new insights into the mechanisms of short single and double stranded oligonucleotide release from cationic lipid complexes (lipoplexes), used in gene therapy. Specifically, we modeled endosomal membranes using giant unilamellar vesicles and investigated the roles of various individual cellular phospholipids in interaction with lipoplexes. Our approach uses a combination of confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking, revealing several new aspects of the release: (a) phosphatidylserine and phosphatidylethanolamine are equally active in disassembling lipoplexes, while phosphatidylcholine and sphingomyelin are inert; (b) in contrast to earlier findings, phosphatidylethanolamine alone, in the absence of anionic phosphatidylserine triggers extensive release; (c) a double-stranded DNA structure remains well preserved after release; (d) lipoplexes exhibited preferential binding to transient lipid domains, which appear at the onset of lipoplex attachment to originally uniform membranes and vanish after initiation of polynucleotide release. The latter effect is likely related to phosphatidyleserine redistribution in membranes due to lipoplex binding. Real time tracking of single DOTAP/DOPE and DOTAP/DOPC lipoplexes showed that both particles remained compact and associated with membranes up to 1-2 min before fusion, indicating that a more complex mechanism, different from suggested earlier rapid fusion, promotes more efficient transfection by DOTAP/DOPE complexes.  相似文献   

10.
We report on new insights into the mechanisms of short single and double stranded oligonucleotide release from cationic lipid complexes (lipoplexes), used in gene therapy. Specifically, we modeled endosomal membranes using giant unilamellar vesicles and investigated the roles of various individual cellular phospholipids in interaction with lipoplexes. Our approach uses a combination of confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking, revealing several new aspects of the release: (a) phosphatidylserine and phosphatidylethanolamine are equally active in disassembling lipoplexes, while phosphatidylcholine and sphingomyelin are inert; (b) in contrast to earlier findings, phosphatidylethanolamine alone, in the absence of anionic phosphatidylserine triggers extensive release; (c) a double-stranded DNA structure remains well preserved after release; (d) lipoplexes exhibited preferential binding to transient lipid domains, which appear at the onset of lipoplex attachment to originally uniform membranes and vanish after initiation of polynucleotide release. The latter effect is likely related to phosphatidyleserine redistribution in membranes due to lipoplex binding. Real time tracking of single DOTAP/DOPE and DOTAP/DOPC lipoplexes showed that both particles remained compact and associated with membranes up to 1-2 min before fusion, indicating that a more complex mechanism, different from suggested earlier rapid fusion, promotes more efficient transfection by DOTAP/DOPE complexes.  相似文献   

11.
An experimental study of the cationic lipid-DNA binding affinity is presented. The binding free energy was determined by monitoring lipoplex dissociation under conditions of increasing salt concentration. The primary procedure was based on the extent of quenching by energy transfer of fluorophores on DNA molecules by fluorophore on a lipid as these molecules came into close association in the lipoplex. Titration calorimetry on the Dickerson dodecamer was also done, with results that were in agreement with the fluorescence data. Measurements on short oligonucleotides allowed estimation of the binding energy per nucleotide. The binding free energy is approximately 0.6 kcal/mole nucleotide for the Dickerson dodecamer and declines for longer oligonucleotides. The entropy gained upon complex formation is approximately 1 entropy unit per released counterion. The method was applied to long DNA molecules (herring and lambda-phage DNA) and revealed that complete dissociation occurs at 750 mM NaCl. Likely contributions of macromolecular desolvation and DNA flexibility to the binding energy are discussed.  相似文献   

12.
In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.  相似文献   

13.
The mechanism of complex formation between DNA and oppositely charged dioctadecyldimethylammonium bromide/dioleoyl phosphatidylethanolamine (DODAB/DOPE) and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/DOPE mixed liposomes, as well as the physico-chemical properties of DNA-mixed liposome complexes, were examined. Fluorescence microscopy showed that the interaction between DNA and oppositely charged mixed liposomes started at very low liposome concentrations and induced a discrete coil-globule transition in individual DNA molecules. The DNA size distribution was bimodal in a wide range of liposome concentrations. The critical concentration of the cationic lipid needed for the complete compaction of single DNA molecules depended on the composition of the charged mixed DODAB/DOPE and DOTAP/DOPE liposomes. Cryogenic transmission electron microscopy (cryo-TEM) observations of DNA complexes with mixed liposomes revealed that the lamellar packing of lipid molecules was typical for the complexes formed from the cationic lipid-enriched mixtures, while inverted hexagonal arrays were found for the neutral lipid-enriched complexes. The microstructures of the complexes were also examined with the use of the small-angle X-ray scattering (SAXS) technique, which confirmed the results obtained by cryo-TE microscopy and enabled the quantitative characterization of lipid packaging in the complexes with DNA macromolecules. We also found that the introduction of the neutral lipid into the complexes between DNA and oppositely charged lipids, DODAB and DOTAP, moderately increased the thermal stability of the complexes and changed the quantitative characteristics of the melting profiles of the complexes.  相似文献   

14.
To evaluate the role of lipid charge density in the serum stability of DOTAP-Chol/DNA complexes (lipoplexes), lipid-DNA interactions, extent of aggregation, supercoil content, and in vitro transfection efficiency of lipoplexes were investigated. In general, higher serum concentration destabilized, and increasing molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP(+)/DNA(-)) stabilized lipoplexes in serum as assessed by the criteria used in this study. The increase of cholesterol content led to increased serum stability, and DOTAP:Chol (mol/mol 1:4)/DNA lipoplex with DOTAP(+)/DNA(-) ratio 4 was the most serum stable formulation of all the formulations examined, and maintained lipid-DNA interactions, did not aggregate and exhibited high in vitro transfection efficiency in 50% (v/v) serum. The increased stability of this formulation could not be explained by the decreased charge density of the lipid component. Furthermore, no single parameter examined in the study could be used to consistently predict the in vitro transfection efficiency of lipoplexes in serum. Surprisingly, no correlation between the maintenance of supercoiled DNA content and in vitro transfection efficiency was found in the study.  相似文献   

15.
Transfection efficiency of lipoplex-mediated gene delivery is multifactorial. However, the mode of interaction between the factors which affect transfection is not fully understood. To help fill this deficiency we evaluated the effect of the interplay between several variables that affect transfection efficiency in cell cultures. For this, we applied the Analysis of Variance Model with Fixed Effects and Repeated Measures to assess the data. The variables studied include: two different genes, Luc, and human growth hormone (hGH), in three different plasmids (two of which contain the luciferase (Luc) gene, but different promoter-enhancer regions (CMV and H19) and one plasmid coding hGH with a S16 promoter); three topoisoforms of pDNA (supercoiled (SC), open circular (OC), and closed circular (CC)); three cationic lipid compositions, all based on the monocationic lipid DOTAP (100% DOTAP, DOTAP/DOPE 1 : 1, and DOTAP/cholesterol 1 : 1, all ratios are mole ratios); two DNA-/L+ charge ratios (0.2 and 0.5); and two cell lines (NIH 3T3 and MBT-2). Our statistical analysis confirmed that the cell type, the gene used for transfection, the promoter type, the type of helper lipid, and DNA-/DOTAP+ charge ratio, all affect transfection efficiency in a statistically significant manner. The most efficient lipoplex formulation in both cell lines was that based on DOTAP (without helper lipid), having CC plasmid DNA. We suggest that for obtaining the most transfection-efficient lipoplex one should select the best topoisoform of pDNA for each particular cell type, and complex it with cationic liposomes having optimal lipid composition.  相似文献   

16.
Non-viral vectors represent an important alternative in gene delivery. Among these vectors, cationic liposomes are widely studied, because of their ability to form stable complexes with DNA fragments (lipoplexes). In the present work, we report on the characterization by electron spin resonance (ESR) spectroscopy and zeta potential measurements of cationic liposomes and of their complexes with oligonucleotides. Liposomes were made with a zwitterionic lipid, DOPE, and a cationic lipid, either DOTAP or DC-Chol. Oligonucleotides were the 20-base single strand polyA, the 20-base single strand polyT, and the corresponding double strand dsAT. The zeta potential as a function of the oligonucleotide/lipid+ ratio gave an S-shaped titration curve. Well-defined surface potential changes took place upon charge compensation between the cationic lipid heads and the phosphate groups on the oligonucleotides. The inversion point depended on the specific system under study. The bilayer properties and the changes that occurred with the incorporation of DNA fragments were also monitored by ESR spectroscopy of appropriately tailored spin probes. For all the systems investigated, the ESR spectra showed that no major alteration took place after lipoplex formation and molecular packing remained substantially unchanged. Both zeta potential and ESR measurements were in favor of an external mode of packing of the lipoplexes.  相似文献   

17.
P Harvie  F M Wong    M B Bally 《Biophysical journal》1998,75(2):1040-1051
We have recently described a method for preparing lipid-based DNA particles (LDPs) that form spontaneously when detergent-solubilized cationic lipids are mixed with DNA. LDPs have the potential to be developed as carriers for use in gene therapy. More importantly, the lipid-DNA interactions that give rise to particle formation can be studied to gain a better understanding of factors that govern lipid binding and lipid dissociation. In this study the stability of lipid-DNA interactions was evaluated by measurement of DNA protection (binding of the DNA intercalating dye TO-PRO-1 and sensitivity to DNase I) and membrane destabilization (lipid mixing reactions measured by fluorescence resonance energy transfer techniques) after the addition of anionic liposomes. Lipid-based DNA transfer systems were prepared with pInexCAT v.2.0, a 4.49-kb plasmid expression vector that contains the marker gene for chloramphenicol acetyltransferase (CAT). LDPs were prepared using N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC) and either 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). For comparison, liposome/DNA aggregates (LDAs) were also prepared by using preformed DODAC/DOPE (1:1 mole ratio) and DODAC/DOPC (1:1 mole ratio) liposomes. The addition of anionic liposomes to the lipid-based DNA formulations initiated rapid membrane destabilization as measured by the resonance energy transfer lipid-mixing assay. It is suggested that lipid mixing is a reflection of processes (contact, dehydration, packing defects) that lead to formulation disassembly and DNA release. This destabilization reaction was associated with an increase in DNA sensitivity to DNase I, and anionic membrane-mediated destabilization was not dependent on the incorporation of DOPE. These results are interpreted in terms of factors that regulate the disassembly of lipid-based DNA formulations.  相似文献   

18.
Non-viral vectors represent an important alternative in gene delivery. Among these vectors, cationic liposomes are widely studied, because of their ability to form stable complexes with DNA fragments (lipoplexes). In the present work, we report on the characterization by electron spin resonance (ESR) spectroscopy and zeta potential measurements of cationic liposomes and of their complexes with oligonucleotides. Liposomes were made with a zwitterionic lipid, DOPE, and a cationic lipid, either DOTAP or DC-Chol. Oligonucleotides were the 20-base single strand polyA, the 20-base single strand polyT, and the corresponding double strand dsAT. The zeta potential as a function of the oligonucleotide/lipid+ ratio gave an S-shaped titration curve. Well-defined surface potential changes took place upon charge compensation between the cationic lipid heads and the phosphate groups on the oligonucleotides. The inversion point depended on the specific system under study. The bilayer properties and the changes that occurred with the incorporation of DNA fragments were also monitored by ESR spectroscopy of appropriately tailored spin probes. For all the systems investigated, the ESR spectra showed that no major alteration took place after lipoplex formation and molecular packing remained substantially unchanged. Both zeta potential and ESR measurements were in favor of an external mode of packing of the lipoplexes.  相似文献   

19.
Transfection of NIH-3T3 cells by a human growth hormone expression vector complexed with liposomes composed of N-(1-(2, 3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP) with or without helper lipids was studied. The transfection efficiency was dependent on the lamellarity of the liposomes used to prepare the lipoplexes. Multilamellar vesicles (MLV) were more effective than large unilamellar vesicles (LUV) of approximately 100 nm, irrespective of lipid composition. The optimal DNA/DOTAP mole ratio for transfection was 相似文献   

20.
Abstract

Multilamellar vesicles (MLVs) containing the cationic lipid DOTAP were used as vectors to lipofect a number of culture cell lines in the presence of serum. The lipofection efficiency of lipoplexes made of MLVs and the plasmid pSV-β galactosidase are much less sensitive to the lipofection-inhibitory effect of serum than the conventionally used lipoplexes made of sonicated small unilamellar vesicles (SUVs). In order to determine the factors favoring the lipofection efficiency of MLVs, we measured the size, as well as the cellular association and uptake of MLV and SUV lipoplexes containing DOTAP alone or DOTAP:DOPE (1:1). Electron microscope images of these complexes were taken to confirm their structure and size. The single most important factor that correlates with transfection efficiency in serum is the size of the lipoplex. SUV lipoplexes remain smaller than 300 nm in the presence of serum, and the lipofection efficiencies are low. MLV lipoplexes are larger (>300 nm) and the lipofection efficiency, as well as cellular association and uptake, are much higher than those of SUV lipoplexes. Exceptions are those lipoplexes made of MLVs of DOTAP and DOPE (1:1) combined with DNA at higher charge ratios, which form hexagonal structures and show poor lipofection as well as cellular association and uptake, even if their lipoplex size exceeds 300 nm. This finding lends credence to our theory of the serum inhibition effect upon lipofection, and suggests ways to improve the transfection efficiency in the presence of serum, by fabricating lipoplexes of defined sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号