首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is known that there is a local biosynthesis of estradiol (E2) in breast carcinoma. The steroidogenic enzymes involved in E2 formation are aromatase which transforms testosterone into E2 and androstenedione into estrone (E1) and reductive 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) which convert E1 into E2. Using immunocytochemistry, we have studied the expression of aromatase and the three reductive 17beta-HSDs 17beta-HSD types 1, 7 and 12 in 41 specimens of female human breast carcinoma and adjacent non-malignant tissues. These results were correlated with the estrogen receptor alpha (ERalpha) and beta (ERbeta), progesterone receptor, androgen receptor, CDC47 and c-erb B-2 expressions and with the tumor stages. Aromatase was found in 58%, 17beta-HSD type 7 in 47% and 17beta-HSD type 12 in 83% of the breast cancer specimens. The 17beta-HSD type 1 could be detected in only one tumor. A significant correlation was observed between the aromatase, 17beta-HSD type 7 and 17beta-HSD type 12 expression, as well as between each of the two enzymes 17beta-types 7 and 12 and the ERbeta expression. The expression of 17beta-HSD type 12 was significantly higher in breast carcinoma specimens than in normal tissue. There was also a significant association of CDC 47 expression with ERbeta, AR and 17beta-HSD type 12. The results indicate that aromatase, 17beta-HSD type 7 and 17beta-HSD type 12, but not 17beta-HSD type 1, are commonly expressed in human breast cancer. Moreover, the high expression of both 17beta-HSD type 12 and ERbeta in breast carcinoma cells may play a role in the development and/or progression of breast cancer.  相似文献   

2.
Although ovaries serve as the primary source of estrogen for pre-menopausal women, after menopause estrogen biosynthesis from circulating precursors occurs in peripheral tissues by the action of several enzymes, 17beta-hydroxysteroid dehydrogenase 1 (17beta-HSD1), aromatase and estrogen sulfatase. In the breast, both normal and tumoral tissues have been shown to be capable of synthesizing estrogens, and this local estrogen production can be implicated in the development of breast tumors. In these tissues, estradiol (E(2)) can be synthesized by three pathways: (1) estrone sulfatase transforms estrogen sulfates into bioactive estrogens, (2) 17beta-HSD1 converts estrone (E(1)) into E(2), (3) aromatase which converts androgens into estrogens is also present and contributes to the in situ synthesis of active estrogens but to a far lesser extent than estrone sulfatase. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. Breast tissue also possesses the estrogen sulfotransferase involved in the conversion of estrogens into their sulfates that are biologically inactive. In the present review, we summarized the action of the 19-nor-progestin nomegestrol acetate (NOMAC) on the sulfatase, 17beta-HSD1 and sulfotransferase activities in the hormone-dependent MCF-7 and T47-D human breast cancer cell lines. Using physiological doses of substrates NOMAC blocks very significantly the conversion of E(1)S to E(2). It inhibits the transformation of E(1) to E(2). NOMAC has a stimulatory effect on sulfotransferase activity in both cell lines, with a strong stimulating effect at low doses but only a weak effect at high concentrations. The effects on the three enzymes are always stronger in the progesterone-receptor rich T47-D cell line as compared with the MCF-7 cell line. Besides, no effect is found for NOMAC on the transformation of androstenedione to E(1) in the aromatase-rich choriocarcinoma cell line JEG-3. In conclusion, the inhibitory effect provoked by NOMAC on the enzymes involved in the biosynthesis of E(2) (sulfatase and 17HSD pathways) in estrogen-dependent breast cancer, as well as the stimulatory effect on the formation of the inactive E(1)S, can open attractive perspectives for future clinical trials.  相似文献   

3.
Estradiol is active in proliferation and differentiation of sex-related tissues like ovary and breast. Glandular steroid metabolism was for a long time believed to dominate the estrogenic milieu around any cell of the organism. Recent reports verified the expression of estrogen receptors in “non-target” tissues as well as the extraglandular expression of steroid metabolizing enzymes. Extraglandular steroid metabolism proved to be important in the brain, skin and in stromal cells of hormone responsive tumors. Aromatase converts testosterone into estradiol and androstenedione into estrone, thereby activating estrogen precursors. The group of 17β-hydroxysteroid dehydrogenases catalyzes the oxidation and/or reduction of the forementioned compounds, e.g. estradiol/estrone, thereby either activating or inactivating estradiol. Aromatase is expressed and regulated in the human THP 1 myeloid leukemia cell line after vitamin D/GMCSF-propagated differentiation. Aromatase expression is stimulated by dexamethasone, phorbolesters and granulocyte/macrophage stimulating factor (GMCSF). Exons I.2 and I.4 are expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. Vitamin D-differentiated THP 1 cells produce a net excess of estradiol in culture supernatants, if testosterone is given as aromatase substrate. In contrast, the 17β-hydroxysteroid dehydrogenase type 4 (17β-HSD 4) is abundantly expressed in unstimulated THP 1 cells and is further stimulated by glucocorticoids (2-fold). The expression is unchanged after vitamin D/GMCSF-propagated differentiation. 17β-HSD 4 expression is not altered by phorbolester treatment in undifferentiated cells but is abolished after vitamin D-propagated differentiation along with downregulation of β-action. Protein kinase C activation therefore appears to dissociate the expression of aromatase and 17β-HSD 4 in this differentiation stage along the monocyte/phagocyte pathway of THP 1 myeloid cells. The expression of steroid metabolizing enzymes in myeloid cells is able to create a microenvironment which is uncoupled from dominating systemic estrogens. These findings may be relevant in the autocrine, paracrine or iuxtacrine cellular crosstalk of myeloid cells in their respective states of terminal differentiation, e.g. in bone metabolism and inflammation.  相似文献   

4.
A novel 17beta-hydroxysteroid dehydrogenase (17beta-HSD) chronologically named type 12 17beta-HSD (17beta-HSD12), that transforms estrone (E1) into estradiol (E2) was identified by sequence similarity with type 3 17beta-HSD (17beta-HSD3) that catalyzes the formation of testosterone from androstenedione in the testis. Both are encoded by large genes spanning 11 exons, most of them showing identical size. Using human embryonic kidney-293 cells stably expressing 17beta-HSD12, we have found that the enzyme catalyzes selectively and efficiently the transformation of E1 into E2, thus identifying its role in estrogen formation, in contrast with 17beta-HSD3, the enzyme involved in the biosynthesis of the androgen testosterone in the testis. Using real-time PCR to quantify mRNA in a series of human tissues, the expression levels of 17beta-HSD12 as well as two other enzymes that perform the same transformation of E1 into E2, namely type 1 17beta-HSD and type 7 17beta-HSD, it was found that 17beta-HSD12 mRNA is the most highly expressed in the ovary and mammary gland. To obtain a better understanding of the structural basis of the difference in substrate specificity between 17beta-HSD3 and 17beta-HSD12, we have performed tridimensional structure modelization using the coordinates of type 1 17beta-HSD and site-directed mutagenesis. The results show the potential role of bulky amino acid F234 in 17beta-HSD12 that blocks the entrance of androstenedione. Overall, our results strongly suggest that 17beta-HSD12 is the major estrogenic 17beta-HSD responsible for the conversion of E1 to E2 in women, especially in the ovary, the predominant source of estrogens before menopause.  相似文献   

5.
Our previous work showed that stallion testis produces high amounts of estrogens which are subsequently found in the ejaculate. These estrogens are mainly synthesized by testicular aromatase, and the major estrogen produced is estrone sulfate (E1S). The objective of this study was to investigate the potential role of E1S as a source of estrogens in the male and female horse reproductive tracts by determining whether both estrone sulfatase (Sulf) and 17beta-hydroxysteroid dehydrogenase type I (17beta-HSD1) activities were present in equine testes, epididymis and uterus. We assessed E1S bioconversion into estrone (E1) and estradiol (E2) in these tissues. Both Sulf and 17beta-HSD1 activities were well detected in the cauda epididymis and uterus. Additionally, Sulf activity was present in the distal corpus of the epididymis, and 17beta-HSDI in the proximal corpus. In contrast, aromatase gene expression, measured as an internal control of endogenous estrogen production, had high activity only in the testis. We found that seminal E1S of testicular origin can be metabolized to E2, especially in the cauda epididymis and uterus. Because E2 appears to play a major role in male and female reproduction, we propose that the bioconversion of seminal E1S could affect male and female fertility.  相似文献   

6.
In order to characterize the main enzymatic systems involved in androgen and estrogen formation as well as metabolism in ZR-75-1 human breast cancer cells, incubation of intact cells was performed for 12 or 24 h at 37 degrees C with tritiated estradiol (E2), estrone (E1), androst-5-ene-3 beta, 17 beta-diol (5-ene-diol), dehydroepiandrosterone (DHEA), testosterone (T), androstenedione (4-ene-dione), dihydrotestosterone (DHT) or androsterone (ADT). The extra- and intracellular steroids were extracted, separated into free steroids, sulfates and non-polar derivatives (FAE) and identified by HPLC coupled to a Berthold radioactivity monitor. Following incubation with E2, 5-ene-diol or T, E1, DHEA and 4-ene-dione were the main products, respectively, thus indicating high levels of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). When 4-ene-dione was used, on the other hand, a high level of transformation into 5 alpha-androstane-3,17-dione (A-dione), Epi-ADT and ADT was found, thus indicating the presence of high levels of 5 alpha-reductase as well as 3 alpha- and 3 beta-hydroxysteroid dehydrogenase. Moreover, some T was formed, due to oxidation by 17 beta-HSD. No estrogen was detected with the androgen precursors T or 4-ene-dione, thus indicating the absence of significant aromatase activity. Moreover, significant amounts of sulfates and non-polar derivatives were found with all the above-mentioned substrates. The present study shows that ZR-75-1 human breast cancer cells possess most of the enzymatic systems involved in androgen and estrogen formation and metabolism, thus offering an excellent model for studies of the control of sex steroid formation and action in breast cancer tissue.  相似文献   

7.
Sulfatase enzymes have important roles in metabolism of steroid hormones and of glycosaminoglycans (GAGs). The activity of five sulfatase enzymes, including steroid sulfatase (STS; arylsulfatase C), arylsulfatase A (ASA; cerebroside sulfatase), arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase), galactose-6-sulfatase (GALNS), and iduronate-2-sulfatase (IDS), was compared in six different mammary cell lines, including the malignant mammary cell lines MCF7, T47D, and HCC1937, the MCF10A cell line which is associated with fibrocystic disease, and in primary epithelial and myoepithelial cell lines established from reduction mammoplasty. The effects of estrogen hormones, including estrone, estradiol, estrone 3-sulfate, and estradiol sulfate on activity of these sulfatases were determined. The malignant cell lines MCF7 and T47D had markedly less activity of STS, ASB, ASA, and GAL6S, but not IDS. The primary myoepithelial cells had highest activity of STS and ASB, and the normal epithelial cells had highest activity of GALNS and ASA. Greater declines in sulfatase activity occurred in response to estrone and estradiol than sulfated estrogens. The study findings demonstrated marked variation in sulfatase activity and in effects of exogenous estrogens on sulfatase activity among the different mammary cell types.  相似文献   

8.
The great majority of breast cancers are in their early stage hormone-dependent and it is well accepted that estradiol (E(2)) plays an important role in the genesis and evolution of this tumor. Human breast cancer tissues contain all the enzymes: estrone sulfatase, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), aromatase, involved in the last steps of E(2) bioformation in this tissue. Quantitative data show that the 'sulfatase pathway', which transforms estrogen sulfates into the bioactive unconjugated E(2), is 100-500 times higher than the 'aromatase pathway' which converts androgens into estrogens. In this paper we explore the effect of E(2) on the sulfatase activity using two hormone-dependent human breast cancer cells: MCF-7 and T-47D. The action of E(2) on the sulfatase activity was evaluated by the conversion of estrone sulfate (E(1)S) into E(2). The cells were incubated in Minimal Essential Medium (MEM) containing 5% steroid-depleted fetal calf serum and incubated with physiological concentrations of [(3)H]E(1)S (5 x 10(-9) M) alone (control) or in the presence of E(2) (5 x 10(-10) to 5 x 10(-5) M) for 24 h at 37 degrees C. It was found that E(2) is a potent inhibitory agent of the estrone sulfatase activity in both cell lines. A low concentration of E(2): 5 x 10(-9) M decreases the sulfatase activity by 67% in MCF-7 cells and 57% in T-47D cells. More than 80% of the decrease in the formation of E(2) was obtained with the dose of 5 x 10(-7) M in both cell lines. It is concluded that this paradoxical effect of E(2) adds a new biological response of this hormone and could be related to estrogen replacement therapy in which it was observed to have either no effect or to decrease breast cancer mortality in postmenopausal women. Preliminary results are indicated in the Proceedings of the 14th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology (Quebec, Canada, 24-27 June 2000) [J. Steroid Biochem. Molec. Biol. 76 (2001) 95-104](1) and presented at the 83rd Annual Meeting of the Endocrine Society (Denver, USA, 20-23 June 2001 (abstract no. P2-615).  相似文献   

9.
There is evidence that estrogens can directly modulate human prostate cell activity. It has also been shown that cultured human prostate cancer LNCaP can synthesize the active estrogen estradiol (E2). To elucidate the metabolism of estrogens in the human prostate, we have studied the expression of enzymes involved in the formation and inactivation of estrogens at the cellular level. 17beta-Hydroxysteroid dehydrogenase (17beta-HSD) types 1, 2, 4, 7, and 12, as well as aromatase mRNA and protein expressions, were studied in benign prostatic hyperplasia (BPH) specimens using in situ hybridization and immunohistochemistry. For 17beta-HSD type 4, only in situ hybridization studies were performed. Identical results were obtained with in situ hybridization and immunohistochemistry. All the enzymes studied were shown to be expressed in both epithelial and stromal cells, with the exception of 17beta-HSD types 4 and 7, which were detected only in the epithelial cells. On the basis of our previous results, showing that 3beta-HSD and 17beta-HSD type 5 are expressed in human prostate, and of the present data, it can be concluded that the human prostate expresses all the enzymes involved in the conversion of circulating dehydroepiandrosterone (DHEA) to E2. The local biosynthesis of E2 might be involved in the development and/or progression of prostate pathology such as BPH and prostate cancer through modulation of estrogen receptors, which are also expressed in epithelial and stromal cells.  相似文献   

10.
PURPOSE: This investigation examined mRNA expression and enzymatic activity of steroid sulfatase (STS) in human mammary myoepithelial cells (MMECs) and MCF-7 cells and assessed the effects of 17-beta estradiol on the activity of STS. METHODS: The mRNA level of STS in MMECs was determined by RT-PCR analysis using specific primers for STS. STS enzymatic activity prior to and after treatment with 17-beta estradiol was determined by measuring 3H-metabolites formed after exposure to [3H]estrone 3-sulfate (E1S) and [3H]dehydroepiandrosterone-sulfate (DHEA-S). RESULTS: Our data demonstrate the presence of STS in the MMECs. Based on RT-PCR analysis, MMECs had slightly lower levels of STS compared to MCF-7 cells. However, sulfatase activity was about 120 times greater in the MMECs than the MCF-7 cells (E1S V(max)=2640nmol/(mg DNAh) compared to 20.9nmol/(mg DNAh)). Exposure to 17-beta estradiol was associated with 70% reduction in E1S sulfatase activity in the MCF-7 cells and 9% increase in the MMECs after 6 days. DISCUSSION: Our studies indicate for the first time the presence of STS in MMECs. This is suggestive of a previously undetermined role for MMECs in converting precursor hormones into active steroid hormones within mammary tissue. In addition, differential response of the MMECs and the MCF-7 cells to estrogen demonstrates differences in hormone metabolism between these two cell types, perhaps related to the absence of estrogen receptors in the MMECs and their presence in the MCF-7 cells. The MMECs may have an important role in hormonal regulation within mammary tissue.  相似文献   

11.
Tremblay MR  Lin SX  Poirier D 《Steroids》2001,66(11):821-831
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) are members of a family of enzymes that catalyze the interconversion of weakly active sexual hormones (ketosteroids) and potent hormones (17beta-hydroxysteroids). Among the known isoforms of 17beta-HSD, the type 1 catalyzes the NAD(P)H-mediated reduction of estrone (E(1)) to estradiol (E(2)), a predominant mitogen for the breast cancer cells. Therefore, the inhibition of this particular enzyme is a logical approach to reduce the concentration of estradiol in breast tumors. To develop inhibitors of type 1 17beta-HSD activity, we hypothesized that molecules containing both hydrophobic and hydrophilic components should be interesting candidates for interacting with both the steroid binding domain and some amino acid residues of the cofactor binding domain of the enzyme. Firstly, a conveniently protected 16beta-(3-aminopropyl)-E(2) derivative was synthesized from commercially available E(1). Then, a representative of all class of NHBoc-protected amino acids (basic, acid, aromatic, aliphatic, hydroxylated) were coupled using standard procedures to the amino group of the precursor. Finally, cleavage of all protecting groups was performed in a single step to generate a series of 16beta-propylaminoacyl derivatives of E(2). The enzymatic screening revealed that none of the novel compounds can inhibit the reductive activity of type 1 17beta-HSD. On the other hand, all of these E(2) derivatives did not show any significant binding affinity on four steroid receptors including the estrogen receptor. Additional efforts aimed at improving the inhibitory potency of these steroidal derivatives on type 1 17beta-HSD without providing estrogenic activities is under investigation using a combinatorial chemistry approach.  相似文献   

12.
Aromatase is present in human breast tumors and in breast cancer cell lines suggesting the possibility of in-situ estrogen production via the androstenedione to estrone and estradiol pathway. However, proof of the biologic relevance of aromatase in breast cancer tissue requires the demonstration that this enzyme mediates biologic effects on cell proliferation. Accordingly, we studied the effects of the aromatase substrate, androstenedione, on the rate of proliferation of wild-type and aromatase-transfected MCF-7 breast cancer cells. Androstenedione did not increase cell growth in wild-type MCF-7 cells which contained relatively low aromatase activity and produced 4-fold more estrone than estradiol. In contrast, aromatase-transfected cell contained higher amounts of aromatase, produced predominantly estradiol, and responded to androstenedione with enhanced growth. An aromatase inhibitor fadrozole hydrochloride, blocked the proliferative effects of androstenedione providing evidence for the role of aromatase in this process. As further evidence of the requirement for aromatase, cells transfected with the neomycin resistance expression plasmid but lacking the aromatase cDNA did not respond to androstenedione. These studies provide evidence that aromatase may have a biologic role for in-situ synthesis of estrogens of breast cancer tissue.  相似文献   

13.
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays an important role in the prereceptor regulation of corticosteroids by locally converting cortisone into active cortisol. To investigate the impact of this mechanism on osteoblast development, we have characterized 11beta-HSD1 activity and regulation in a differentiating human osteoblast cell line (SV-HFO). Continuous treatment with the synthetic glucocorticoid dexamethasone induces differentiation of SV-HFO cells during 21 d of culture. Using this cell system, we showed an inverse relationship between 11beta-HSD1 activity and osteoblast differentiation. 11beta-HSD1 mRNA expression and activity were low and constant in differentiating osteoblasts. However, in the absence of differentiation (no dexamethasone), 11beta-HSD1 mRNA and activity increased strongly from d 12 of culture onward, with a peak around d 19. Promoter reporter studies provided evidence that specific regions of the 11beta-HSD1 gene are involved in this differentiation controlled regulation of the enzyme. Functional implication of these changes in 11beta-HSD1 is shown by the induction of osteoblast differentiation in the presence of cortisone. The current study demonstrates the presence of an intrinsic differentiation-driven molecular switch that controls expression and activity of 11beta-HSD1 and thereby cortisol production by human osteoblasts. This efficient mechanism by which osteoblasts generate cortisol in an autocrine fashion to ensure proper differentiation will help to understand the complex effects of cortisol on bone metabolism.  相似文献   

14.
Human breast cancer tissue contains enzymes (estrone sulfatase, 17beta-hydroxysteroid dehydrogenase, aromatase) involved in the last steps of estradiol (E(2)) formation. In this tissue, E(2) can be synthesized by two main pathways: (1) sulfatase-transforms estrogen sulfates into bioactive E(2), and the (2) aromatase-converts androgens into estrogens. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization.In the present study, we demonstrated in T-47D and MCF-7 human breast cancer cells that norelgestromin (NGMN) (a metabolite of norgestimate) is a potent inhibitory agent of the estrone sulfatase activity. After 24h incubation of physiological concentrations of E(1)S (5 x 10(-9)mol/l) the inhibitory effect of NGMN at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 43+/-7, 74+/-4 and 97+/-2%, respectively, in T-47D cells; 25+/-4, 57+/-5 and 96+/-2% respectively, in MCF-7 cells. Comparative studies using medroxyprogesterone acetate (MPA) showed that this progestin also has an inhibitory effect on sulfatase activity, but significantly less intense than that of NGMN. The inhibition for MPA at concentrations of 5 x 10(-9), 5 x 10(-7) and 5 x 10(-5)mol/l was 31+/-5, 47+/-3 and 61+/-3%, respectively, for T-47D cells; 6+/-3, 20+/-3 and 63+/-4%, respectively, for MCF-7 cells.In conclusion, the present data show that NGMN is a very potent inhibitory agent for sulfatase activity in the hormone-dependent breast cancer cells, resulting in decreased tissue concentration of E(2). The clinical significance of this finding remains to be elucidated.  相似文献   

15.

Background  

During human pregnancy, the placental villi produces high amounts of estradiol. This steroid is secreted by the syncytium, which is directly in contact with maternal blood. Estradiol has to cross placental foetal vessels to reach foetal circulation. The enzyme 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2) was detected in placental endothelial cells of foetal vessels inside the villi. This enzyme catalyzes the conversion of estradiol to estrone, and of testosterone to androstenedione. It was proposed that estradiol level into foetal circulation could be regulated by 17beta-HSD2.  相似文献   

16.
Estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell, or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of Medrogestone (Prothil) on 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities of the hormone-dependent MCF-7 and T-47D human breast cancer cell lines. Using physiological doses of estrone ([3H]-E1: 5 x 10(-9) mol/l) this estrogen is converted in a great proportion to E2 in both cell lines. After 24 h of the cell culture, Medrogestone significantly inhibits this transformation in a dose-dependent manner by 39% and 80% at 5 x 10(-8) M and 5 x 10(-5) M, respectively in T-47D cells; the effect is less intense in MCF-7 cells: 25% and 55% respectively. The IC50 values are 0.45 micromol/l in T-47D and 17.36 micromol/l in MCF-7 cells. It is concluded that the inhibition provoked by Medrogestone on the reductive 17beta-HSD activity involved in the local biosynthesis of the biologically active estrogen estradiol, may constitute a new therapeutic approach for the treatment of breast cancer.  相似文献   

17.
Estrogen sulfotransferase (EST) activity measured under optimal in vitro conditions in the 105,000 g cytosols (HSS) of homogenized intrauterine tissues (amnion, chorion, endometrium, decidua basalis and placenta) from guinea-pigs at the 50th day of gestation indicated that the highest specific activity occurred in the chorion. EST activity in the chorion increased from day 34 (early gestation) to peak around day 45 (mid-gestation), before significantly decreasing around day 50 and further declining to barely detectable levels beyond day 60 (late gestation, the onset of parturition). 17 beta-Hydroxysteroid dehydrogenase (17 beta-HSD) activity in the chorion was almost completely membrane associated. The specific activity of the 17 beta-HSD reduction reaction in the 105,000 g pellet was 2.5-fold higher at mid-gestation than at late gestation, while the specific activity of the 17 beta-HSD oxidation reaction was 1.7-fold higher at mid-gestation as compared with late gestation. When intact pieces of chorion tissue from mid- and late gestation were incubated with 5 nM [3H]estradiol (E2), approx. 80% of the recovered free estrogen was E1 (estrone). Only chorion from animals at the onset of parturition were able to produce detectable amounts of E2 from 5 nM [3H]E1. Under the same experimental conditions the ratio of estradiol sulfate (E2S) to estrone sulfate (E1S) isolated from the media and methanol washes of late gestation chorion tissue was 3-4 times greater than for the day 45 tissue.  相似文献   

18.
We report the synthesis and biochemical evaluation of a number of 4-hydroxyphenyl ketones as potential inhibitors of the enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD). In particular, we evaluated compounds against the catalysis of the conversion of androstenedione (AD) to testosterone (T) [17beta-HSD type 3 (17beta-HSD3)], furthermore, in an effort to determine the specificity of our compounds, we evaluated the ability of the compounds to inhibit the catalysis of the conversion of estrone (E1) to estradiol (E2) [17beta-HSD type 1 (17beta-HSD1)] as well as the conversion of dehydroepiandrosterone (DHEA) to AD [by 3beta-hydroxysteroid dehydrogenase (3beta-HSD)]. The results of our study suggest that the synthesised compounds are, in general, able to inhibit 17beta-HSD3 whilst being weak inhibitors of 17beta-HSD1. Against 3beta-HSD, we discovered that all of the synthesised compounds were weak inhibitors (all were found to possess less than 50% inhibition at [I]=500 microM). More specifically, we discovered that 1-(4-hydroxy-phenyl)-nonan-1-one (15) was the most potent against 17beta-HSD3 (IC(50)=2.9 microM) whilst possessing poor inhibitory activity against 17beta-HSD1 ( approximately 36% inhibitory activity against this reaction at [I]=100 microM) and less than 10% inhibition for the conversion of DHEA to AD. We have therefore provided good lead compounds in the design and synthesis of novel non-steroidal inhibitors of 17beta-HSD3.  相似文献   

19.
Aromatase expression and its localization in human breast cancer   总被引:3,自引:0,他引:3  
Aromatization or in situ estrogen production by aromatase has been considered to play an important role in the development of human breast carcinoma. In the human breast, aromatase overexpression is observed in the stromal or interstitial cells of the carcinoma, especially at the sites of frank invasion and/or adipose tissue. Transplantation experiments in the nude mouse employing MCF-7 and/or SF-TY human fibroblast cell lines revealed that aromatase activity and expression were much higher in the tumour with MCF-7 and SF-TY than that with MCF-7 alone. Aromatase overexpression in human breast carcinoma tissue is considered to occur as a result of carcinomastromal cell interactions, i.e. paracrine communication between stromal and carcinoma cells. Aromatase overexpression is correlated with the malignant phenotype in the human breast, but not with stage, age, clinical stages, clinical course, or proliferative activity of breast carcinoma. Aromatase overexpression may be correlated with development, rather than the biological behaviour of breast malignancy. Aromatase overexpression is not necessarily correlated with expression of 17β-hydroxysteroid dehydrogenase type 1, which converts estrone to estradiol and estrogen receptor. Different mechanisms may be involved in the regulation of expression of these two important estrogen-metabolizing enzymes and estrogen receptor in human breast cancer. Aromatase overexpression in intratumoral stromal cells was much more frequently detected in male breast cancer than in female counterparts, which confers a growth advantage on cancer cells in a male hormonal environment with low serum estrogen levels.  相似文献   

20.
Intratumoral metabolism and synthesis of biologically active steroids such as estradiol and 5-dihydrotestosterone as a result of interactions of various enzymes are considered to play very important roles in the pathogenesis and development of hormone-dependent breast carcinoma. Among these enzymes involved in estrogen metabolism, intratumoral aromatase play an important role in converting androgens to estrogens in situ from serum and serving as the source of estrogens, especially in postmenopausal patients with breast carcinoma. However, other enzymes such as 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, estrogen sulfatase (STS), and estrogen sulfotransferase, which contribute to in situ availability of biologically active estrogens, also play pivotal roles in this intratumoral estrogen production above. Androgen action on human breast carcinoma has not been well-studied but are considered important not only in hormonal regulation but also other biological features of carcinoma cells. Intracrine mechanisms also play important roles in androgen actions on human breast carcinoma cells. Among the enzymes involved in biologically active androgen metabolism and/or synthesis, both 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; conversion from circulating androstenedione to testosterone) and 5-reductase (5Red; reduction of testosterone to DHT (5-dihydrotestosterone) were expressed in breast carcinoma tissues, and in situ production of DHT has been proposed in human breast cancer tissues. However, intracrine mechanisms of androgens as well as their biological or clinical significance in the patients with breast cancer have not been fully elucidated in contrast to those in estrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号