首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunity proteins of pediocin-like bacteriocins show a high degree of specificity with respect to the pediocin-like bacteriocin they recognize and confer immunity to. The aim of this study was to identify regions of the immunity proteins that are involved in this specific recognition. Six different hybrid immunity proteins were constructed from three different pediocin-like bacteriocin immunity proteins that have similar sequences but confer resistance to different bacteriocins. These hybrid immunity proteins were then tested for their ability to confer immunity to various pediocin-like bacteriocins. The specificities of the hybrid immunity proteins proved to be similar to those of the immunity proteins from which the C-terminal halves were derived, thus revealing that the C-terminal half of immunity proteins for pediocin-like bacteriocins contains a domain that is involved in specific recognition of the bacteriocins they confer immunity to. Moreover, the results also revealed that the effectiveness of an immunity protein is strain dependent and that its functionality thus depends in part on interplay with strain-dependent factors. To further investigate the structure-function relationship of these immunity proteins, the enterocin A and leucocin A immunity proteins (EntA-im and LeuA-im) were purified to homogeneity and structurally analyzed under various conditions by Circular dichroism (CD) spectroscopy. The results revealed that both immunity proteins are alpha-helical and well structured in an aqueous environment, the denaturing temperature being 78.5 degrees C for EntA-im and 58.0 degrees C for LeuA-im. The CD spectra also revealed that there was no further increase in the structuring or alpha-helical content when the immunity proteins were exposed to dodecylphosphocholine micelles or dioleoyl-L-alpha-phosphatidyl-DL-glycerol (DOPG) liposomes, indicating that the immunity proteins, in contrast to the bacteriocins, do not interact extensively with membranes. They may nevertheless be loosely associated with the membrane, possibly as peripheral membrane proteins, thus enabling them to interact with their cognate bacteriocin.  相似文献   

2.
Pediocin-like antimicrobial peptides (AMPs) form a group of lactic acid bacteria produced, cationic membrane-permeabilizing peptides with 37 to 48 residues. Upon exposure to membrane-mimicking entities, their hydrophilic, cationic, and highly conserved N-terminal region forms a three-stranded antiparallel beta-sheet supported by a conserved disulfide bridge. This N-terminal beta-sheet region is followed by a central amphiphilic alpha-helix and this in most (if not all) of these peptides is followed by a rather extended C-terminal tail that folds back onto the central alpha-helix, thereby creating a hairpin-like structure in the C-terminal half. There is a flexible hinge between the beta-sheet N-terminal region and the hairpin C-terminal region and one thus obtains two domains that may move relative to each other. The cationic N-terminal beta-sheet domain mediates binding of the pediocin-like AMPs to the target-cell surface through electrostatic interactions, while the more hydrophobic and amphiphilic C-terminal hairpin domain penetrates into the hydrophobic part of the target-cell membrane, thereby mediating leakage through the membrane. The hinge provides the structural flexibility that enables the C-terminal hairpin domain to dip into the hydrophobic part of the membrane. Despite extensive sequence similarities, these AMPs differ markedly in their target-cell specificity, and results obtained with hybrid AMPs indicate that the membrane-penetrating hairpin-like C-terminal domain is the major specificity determinant.Bacteria that produce pediocin-like AMPs also produce a 11-kDa cognate immunity protein that protects the producer. The immunity proteins are well-structured, 4-helix bundle cytosolic proteins. They show a high degree of specificity in that they largely recognize and confer immunity only to their cognate AMP and in some cases to a few AMPs that are closely related to their cognate AMP. The C-terminal half of the immunity proteins contains a domain that is involved in specific recognition of the C-terminal membrane-penetrating specificity-determining hairpin domain of the cognate AMP.  相似文献   

3.
The pediocin-like bacteriocins, produced by lactic acid bacteria, are bactericidal polypeptides with very similar primary structures. Peptide synthesis followed by reverse-phase and ion-exchange chromatographies yielded biologically active pediocin-like bacteriocins in amounts and with a purity sufficient for characterizing their structure and mode of action. Despite similar primary structures, the pediocin-like bacteriocins, i.e., pediocin PA-1, sakacin P, curvacin A, and leucocin A, differed in their relative toxicities against various bacterial strains. On the basis of the primary structures, the polypeptides of these bacteriocins were divided into two modules: the relatively hydrophilic and well conserved N-terminal region, and the somewhat more diverse and hydrophobic C-terminal region. By peptide synthesis, four new biologically active hybrid bacteriocins were constructed by interchanging corresponding modules from various pediocin-like bacteriocins. All of the new hybrid bacteriocin constructs had bactericidal activity. The relative sensitivity of different bacterial strains to a hybrid bacteriocin was similar to that to the bacteriocin from which the C-terminal module was derived and quite different from that to the bacteriocin from which the N-terminal was derived. Thus, the C-terminal part of the pediocin-like bacteriocins is an important determinant of the target cell specificity. The synthetic bacteriocins were more stable than natural isolates, presumably as a result of the absence of contaminating proteases. However, some of the synthetic bacteriocins lost activity, but this was detectable only after months of storage. Mass spectrometry suggested that this instability was due to oxidation of methionine residues, resulting in a 10- to 100-fold reduction in activity.  相似文献   

4.
Many Gram-positive bacteria produce ribosomally synthesized antimicrobial peptides, often termed bacteriocins. Genes encoding pediocin-like bacteriocins are generally cotranscribed with or in close vicinity to a gene encoding a cognate immunity protein that protects the bacteriocin-producer from their own bacteriocin. We present the first crystal structure of a pediocin-like immunity protein, EntA-im, conferring immunity to the bacteriocin enterocin A. Determination of the structure of this 103-amino acid protein revealed that it folds into an antiparallel four-helix bundle with a flexible C-terminal part. The fact that the immunity protein conferring immunity to carnobacteriocin B2 also consists of a four-helix bundle (Sprules, T., Kawulka, K. E., and Vederas, J. C. (2004) Biochemistry 43, 11740-11749) strongly indicates that this is a conserved structural motif in all pediocin-like immunity proteins. The C-terminal half of the immunity protein contains a region that recognizes the C-terminal half of the cognate bacteriocin, and the flexibility in the C-terminal end of the immunity protein might thus be an important characteristic that enables the immunity protein to interact with its cognate bacteriocin. By homology modeling of three other pediocin-like immunity proteins and calculation of the surface charge distribution for EntA-im and the three structure models, different charge distributions were observed. The differences in the latter part of helix 3, the beginning of helix 4, and the loop connecting these helices might also be of importance in determining the specificity.  相似文献   

5.
Several lactic acid bacteria produce so-called pediocin-like bacteriocins that share sequence characteristics, but differ in activity and target cell specificity. The significance of a C-terminal disulfide bridge present in only a few of these bacteriocins was studied by site-directed mutagenesis of pediocin PA-1 (which naturally contains the bridge) and sakacin P (which lacks the bridge). Introduction of the C-terminal bridge into sakacin P broadened the target cell specificity of this bacteriocin, as illustrated by the fact that the mutants were 10 to 20 times more potent than the wild-type toward certain indicator strains, whereas the potency toward other indicator strains remained essentially unchanged. Like pediocin PA-1, disulfide-containing sakacin P mutants had the same potency at 20 and 37 degrees C, whereas wild-type sakacin P was approximately 10 times less potent at 37 degrees C than at 20 degrees C. Reciprocal effects on target cell specificity and the temperature dependence of potency were observed upon studying the effect of removing the C-terminal disulfide bridge from pediocin PA-1 by Cys-->Ser mutations. These results clearly show that a C-terminal disulfide bridge in pediocin-like bacteriocins contributes to widening of the antimicrobial spectrum as well as to higher potency at elevated temperatures. Interestingly, the differences between sakacin P and pediocin PA-1 in terms of the temperature dependency of their activities correlated well with the optimal temperatures for bacteriocin production and growth of the bacteriocin-producing strain.  相似文献   

6.
The continuing story of class IIa bacteriocins.   总被引:2,自引:0,他引:2  
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.  相似文献   

7.
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.  相似文献   

8.
Antimicrobial peptides belonging to the pediocin-like family of bacteriocins (class IIa bacteriocins) produced by lactic acid bacteria contain several tryptophan residues that are highly conserved. Since tryptophan residues in membrane proteins are often positioned in the membrane-water interface, we hypothesized that Trp residues in bacteriocins could be important determinants of the structure of membrane-bound peptides and of anti-microbial activity. To test this hypothesis, the effects of mutating each of the 3 tryptophan residues (Trp18, Trp33, and Trp41) in the 43-residue pediocin-like bacteriocin sakacin P were studied. Trp18 and Trp33 are located at each end of an amphihilic alpha-helix, whereas Trp41 is near the end of an unstructured C-terminal tail. Replacement of Trp33 with the hydrophobic residues Leu and Phe had marginal effects on activity, whereas replacement with the more polar Tyr and Arg reduced activity 10-20 and 500-1000 times, respectively, indicating that Trp33 and the C-terminal part of the helix interact with the hydrophobic core of the membrane. Any mutation of Trp18 and Trp41 reduced activity, indicating that these two residues play unique roles. Substitutions with other aromatic residues were the least deleterious, indicating that both Trp18 and Trp41 interact with the membrane-water interface. The suggested locations of the three Trp residues are compatible with a structural model in which the helix and the C-terminal tail form a hairpin-like structure, bringing Trp18 and Trp41 close to each other in the interface, and placing Trp33 in the hydrophobic core of the membrane. Indeed, the deleterious effect of the W18L and W41L mutations could be overcome by stabilizing the hairpin-like structure by introduction of a disulfide bridge between residues 24 and 44. These results provide a basis for a refined structural model of pediocin-like bacteriocins and highlight the unique role that tryptophan residues can play in membrane-interacting peptides.  相似文献   

9.

Background  

Pediocin-like bacteriocins, ribosomally-synthesized antimicrobial peptides, are generally coexpressed with cognate immunity proteins in order to protect the bacteriocin-producer from its own bacteriocin. As a step for understanding the mode of action of immunity proteins, we determined the crystal structure of PedB, a pediocin-like immunity protein conferring immunity to pediocin PP-1.  相似文献   

10.
A 15-mer fragment that is derived from the helical region in the C-terminal half of pediocin PA-1 inhibited the activity of pediocin PA-1. Of 13 other pediocin-like (hybrid) bacteriocins, only the hybrid bacteriocin Sak/Ped was markedly inhibited by the 15-mer fragment. Sak/Ped was the only one of these bacteriocins that had a sequence (in the C-terminal helix-containing half) identical to that of the 15-mer fragment, indicating that the fragment inhibits pediocin-like bacteriocins in a sequence-dependent manner. By replacing (one at a time) all 15 residues in the fragment with Ala or Leu, five residues (K1, A2, T4, N8, and A15) were identified as being especially important for the inhibitory action of the fragment. The results suggest that the corresponding residues (K20, A21, T23, N27, and A34, respectively) in pediocin PA-1 might be involved in interactions between pediocin PA-1 and its receptor. To characterize the environment surrounding these five residues when pediocin PA-1 interacts with target cells, these residues were replaced (one at a time) with a hydrophobic large (Leu) residue, a hydrophilic charged (Asp or Arg) residue, and a small (Ala or Gly) residue. The results revealed that residues A21 and A34 are in a spatially constrained environment, since the replacement with a small (Gly) residue was the only substitution that did not markedly reduce the bacteriocin activity. The positive charge in K20 and the polar amide group in N27 appeared to interact with electronegative groups, since the replacement of these two residues with a positive (Arg) residue was well tolerated, while replacement with a negative (Asp) residue was detrimental to the bacteriocin activity. K20 was in a less constrained environment than N27, since the replacement of K20 with a large hydrophobic (Leu) residue was tolerated fairly well and to a greater extent than N27. T23 seemed to be in an environment that was not restricted with respect to size, polarity, and charge, since replacements with large (Leu) and small (Ala) hydrophobic residues and a hydrophilic negative (Asp) residue were tolerated fairly well (2- to 6-fold reduction in activity). Moreover, the replacement of T23 with a large positive (Arg) residue resulted in wild-type or better-than-wild-type activity.  相似文献   

11.
The immunity proteins of pediocin-like bacteriocins possess a positively charged region which is located at the C-terminus in all three subclasses. It has been suggested that this region may be involved in directing the immunity protein to the surface of the bacterial cell membrane. The aim of this study was to determine whether the positively charged residue lysine-46 (K46) around the hydrophobic pocket played a key role for immunity activity of subgroup A immunity protein PedB. At first, heterologous expression of the immune gene pedB from Lactobacillus plantarum BM-1 rendered the sensitive Lactobacillus plantarum WQ0815 resistant to bacteriocin BM-1. Then, using site-directed mutagenesis, the residue K46 was replaced by five different amino-acid residues, including arginine (R), aspartate (D), glutamate (E), glutamine (Q), and threonine (T). Western blot analysis confirmed that all mutated pedB genes were successfully expressed in the host L. plantarum WQ0815. Bacteriocin activity assays subsequently showed that any substitution of the K46 residue significantly reduced its immunity activity. Our present results indicated that the positively charged residue K46 located near the hydrophobic pocket was essential for the functionality of the immunity protein PedB.  相似文献   

12.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

13.
A collection of chimeric pore-forming domains between colicins A and B was constructed to investigate the specific determinants responsible for recognition by the corresponding immunity proteins. The fusion sites in the hybrid proteins were positioned according to the three-dimensional structure of the soluble form of the colicin A pore-forming domain. The hydrophobic hairpin of colicin pore-forming domains, buried in the core of the soluble structure, was the main determinant recognized by the integral immunity proteins. The immunity protein function may require helix-helix recognition within the lipid bilayer.  相似文献   

14.
The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides.  相似文献   

15.
16.
Sprules T  Kawulka KE  Vederas JC 《Biochemistry》2004,43(37):11740-11749
Bacteriocins produced by lactic acid bacteria are potent antimicrobial compounds which are active against closely related bacteria. Producer strains are protected against the effects of their cognate bacteriocins by immunity proteins that are located on the same genetic locus and are coexpressed with the gene encoding the bacteriocin. Several structures are available for class IIa bacteriocins; however, to date, no structures are available for the corresponding immunity proteins. We report here the NMR solution structure of the 111-amino acid immunity protein for carnobacteriocin B2 (ImB2). ImB2 folds into a globular domain in aqueous solution which contains an antiparallel four-helix bundle. Extensive packing by hydrophobic side chains in adjacent helices forms the core of the protein. The C-terminus, containing a fifth helix and an extended strand, is held against the four-helix bundle by hydrophobic interactions with helices 3 and 4. Most of the charged and polar residues in the protein face the solvent. Helix 3 is well-defined to residue 55, and a stretch of nascent helix followed by an unstructured loop joins it to helix 4. No interaction is observed between ImB2 and either carnobacteriocin B2 (CbnB2) or its precursor. Protection from the action of CbnB2 is only observed when ImB2 is expressed within the cell. The loop between helices 3 and 4, and a hydrophobic pocket which it partially masks, may be important for interaction with membrane receptors responsible for sensitivity to class IIa bacteriocins.  相似文献   

17.
Kaur K  Andrew LC  Wishart DS  Vederas JC 《Biochemistry》2004,43(28):9009-9020
Dynamic aspects of structural relationships among class IIa bacteriocins, which are antimicrobial peptides from lactic acid bacteria (LAB), have been examined by use of circular dichroism (CD), molecular dynamics (MD) simulations, and activity testing. Pediocin PA-1 is a potent class IIa bacteriocin, which contains a second C-terminal disulfide bond in addition to the highly conserved N-terminal disulfide bond. A mutant of pediocin PA-1, ped[M31Nle], wherein the replacement of methionine by norleucine (Nle) gives enhanced stability toward aerobic oxidation, was synthesized by solid-phase peptide synthesis to study the activity of the peptide in relation to its structure. The secondary structural analysis from CD spectra of ped[M31Nle], carnobacteriocin B2 (cbn B2), and leucocin A (leuA) at different temperatures suggests that the alpha-helical region of these peptides is important for target recognition and activity. Using molecular modeling and dynamic simulations, complete models of pediocin PA-1, enterocin P, sakacin P, and curvacin A in 2,2,2-trifluoroethanol (TFE) were generated to compare structural relationships among this class of bacteriocins. Their high sequence similarity allows for the use of homology modeling techniques. Starting from homology models based on solution structures of leuA (PDB code 1CW6) and cbnB2 (PDB code 1CW5), results of 2-4 ns MD simulations in TFE and water at 298 and 313 K are reported. The results indicate that these peptides have a common helical C-terminal domain in TFE but a more variable beta sheet or coiled N terminus. At elevated temperatures, pediocin PA-1 maintains its overall structure, whereas peptides without the second C-terminal disulfide bond, such as enterocin P, sakacin P, curvacin A, leuA, and cbnB2 experience partial disruption of the helical section. Pediocin PA-1 and ped[M31Nle] were found to be equally active at different temperatures, whereas the other peptides that lack the second C-terminal disulfide bond are 30-50 times less antimicrobially potent at 310 K (37 degrees C) than at 298 K (25 degrees C). These results indicate that the structural changes in the helical region observed at elevated temperatures account for the loss of activity of these peptides. The presence of C-terminal hydrophobic residues on one side of the amphipathic helix in class IIa bacteriocins is an important feature for receptor recognition and specificity toward particular organisms. This study assists in the understanding of structure-activity relationships in type IIa bacteriocins and demonstrates the importance of the conserved C-terminal amphipathic alpha helix for activity.  相似文献   

18.
A new bacteriocin has been isolated from an Enterococcus faecium strain. The bacteriocin, termed enterocin A, was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and mass spectrometry analysis. By combining the data obtained from amino acid and DNA sequencing, the primary structure of enterocin A was determined. It consists of 47 amino acid residues, and the molecular weight was calculated to be 4,829, assuming that the four cysteine residues form intramolecular disulfide bridges. This molecular weight was confirmed by mass spectrometry analysis. The amino acid sequence of enterocin A shared significant homology with a group of bacteriocins (now termed pediocin-like bacteriocins) isolated from a variety of lactic acid-producing bacteria, which include members of the genera Lactobacillus, Pediococcus, Leuconostoc, and Carnobacterium. Sequencing of the structural gene of enterocin A, which is located on the bacterial chromosome, revealed an N-terminal leader sequence of 18 amino acid residues, which was removed during the maturation process. The enterocin A leader belongs to the double-glycine leaders which are found among most other small nonlantibiotic bacteriocins, some lantibiotics, and colicin V. Downstream of the enterocin A gene was located a second open reading frame, encoding a putative protein of 103 amino acid residues. This gene may encode the immunity factor of enterocin A, and it shares 40% identity with a similar open reading frame in the operon of leucocin AUL 187, another pediocin-like bacteriocin.  相似文献   

19.
The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed.  相似文献   

20.
Listeria innocua 743 produces an inhibitory activity demonstrating broad-spectrum inhibition of Listeria monocytogenes isolates. Gel-electrophoretic analysis of culture supernatants indicated that two inhibitors with different molecular weights were produced by this strain. Insertion of Tn917 into a 2.9 Kb plasmid (pHC743) generated mutants with either an impaired ability or a loss in ability to produce one of the inhibitors. Sequence analysis of the transposon insertion regions revealed the presence of two continuous open reading frames, the first encoding a new pediocin-like bacteriocin (lisA) and the second encoding a protein homologous with genes involved in immunity toward other bacteriocins (lisB). Translation of the bacteriocin gene (lisA) initiates from a noncanonical start codon and encodes a 71-amino-acid prebacteriocin which lacked the double glycine leader peptidase processing site common in other type II bacteriocins. Alignment of the sequence with the processed N termini of related bacteriocins suggests that the mature bacteriocin consists of 43 amino acids, with a predicted molecular mass of 4,484 Da. Mutants containing insertions into lisA were sensitive to the inhibitor, indicating that lisAB forms a single operon and that lisB represents the immunity protein. Cloning of an amplicon containing the lisAB operon into Escherichia coli resulted in expression and export of the bacteriocin. This finding confirms that the phenotype is dependent on the structural and immunity gene only and that export of this bacteriocin is sec dependent. This is the first confirmation of bacteriocin production in a Listeria spp., and it is of interest that this bacteriocin is closely related to the pediocin family of bacteriocins produced by lactic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号