首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
GAzer: gene set analyzer   总被引:1,自引:0,他引:1  
Gene Set Analyzer (GAzer) is a web-based integrated gene set analysis tool covering previously reported parametric and non-parametric models. Based on a simulation test for the reported algorithms, we classified and implemented three main statistical methods consisting of the z-statistic, gene permutation and sample permutation for ten gene set categories including Gene Ontology (GO) for human, mouse, rat and yeast. This tool identifies significantly altered gene sets scored by z-statistics and P-values from the z-test or permutation test and provides q-values and Bonferroni P-values to correct multiple hypothesis testing. GAzer allows users to observe changes in expression of each gene in a gene set or to see the significance of the gene sets containing a gene(s) of interest, thus allowing interactive data analysis both at the gene and gene set level. Moreover, GAzer offers extensive annotation for each gene. AVAILABILITY: The GAzer gene set analyzer is freely available at http://integromics.kobic.re.kr/GAzer/. SUPPLEMENTARY INFORMATION: This can be found on the web page (http://integromics.kobic.re.kr/GAzer/supplement.jsp).  相似文献   

2.
Jenssen TK  Kuo WP  Stokke T  Hovig E 《Human genetics》2002,111(4-5):411-420
We analyzed associations between gene expression in breast cancer and patient survival for 8024 genes from a previously published microarray data set. Analysis of survival, by using the logrank test, was performed automatically for each gene. After correcting for multiple testing, we identified 95 genes whose expression was significantly associated with patient survival. The independent prognostic value of the genes ranking the highest in univariate analysis, together with clinical parameters, was assessed by Cox multivariate regression analysis. The P-values from these logrank tests were also mapped to chromosomal positions and compared with previously reported amplicon regions. We used PubGene web tools to identify groups of genes that had co-occurred in the literature and whose expression patterns were associated with survival. Our analyses demonstrate the comprehensiveness of the microarray technology with respect to measuring gene expression and indicate that the technology may be used to screen for potential clinical markers.  相似文献   

3.
Extracting three-way gene interactions from microarray data   总被引:1,自引:0,他引:1  
MOTIVATION: It is an important and difficult task to extract gene network information from high-throughput genomic data. A common approach is to cluster genes using pairwise correlation as a distance metric. However, pairwise correlation is clearly too simplistic to describe the complex relationships among real genes since co-expression relationships are often restricted to a specific set of biological conditions/processes. In this study, we described a three-way gene interaction model that captures the dynamic nature of co-expression relationship between a gene pair through the introduction of a controller gene. RESULTS: We surveyed 0.4 billion possible three-way interactions among 1000 genes in a microarray dataset containing 678 human cancer samples. To test the reproducibility and statistical significance of our results, we randomly split the samples into a training set and a testing set. We found that the gene triplets with the strongest interactions (i.e. with the smallest P-values from appropriate statistical tests) in the training set also had the strongest interactions in the testing set. A distinctive pattern of three-way interaction emerged from these gene triplets: depending on the third gene being expressed or not, the remaining two genes can be either co-expressed or mutually exclusive (i.e. expression of either one of them would repress the other). Such three-way interactions can exist without apparent pairwise correlations. The identified three-way interactions may constitute candidates for further experimentation using techniques such as RNA interference, so that novel gene network or pathways could be identified.  相似文献   

4.
Hierarchical Bayes models for cDNA microarray gene expression   总被引:2,自引:0,他引:2  
cDNA microarrays are used in many contexts to compare mRNA levels between samples of cells. Microarray experiments typically give us expression measurements on 1000-20 000 genes, but with few replicates for each gene. Traditional methods using means and standard deviations to detect differential expression are not satisfactory in this context. A handful of alternative statistics have been developed, including several empirical Bayes methods. In the present paper we present two full hierarchical Bayes models for detecting gene expression, of which one (D) describes our microarray data very well. We also compare the full Bayes and empirical Bayes approaches with respect to model assumptions, false discovery rates and computer running time. The proposed models are compared to existing empirical Bayes models in a simulation study and for a set of data (Yuen et al., 2002), where 27 genes have been categorized by quantitative real-time PCR. It turns out that the existing empirical Bayes methods have at least as good performance as the full Bayes ones.  相似文献   

5.

Background  

Many methods have been developed to test the enrichment of genes related to certain phenotypes or cell states in gene sets. These approaches usually combine gene expression data with functionally related gene sets as defined in databases such as GeneOntology (GO), KEGG, or BioCarta. The results based on gene set analysis are generally more biologically interpretable, accurate and robust than the results based on individual gene analysis. However, while most available methods for gene set enrichment analysis test the enrichment of the entire gene set, it is more likely that only a subset of the genes in the gene set may be related to the phenotypes of interest.  相似文献   

6.
MOTIVATION: Gene set analysis allows formal testing of subtle but coordinated changes in a group of genes, such as those defined by Gene Ontology (GO) or KEGG Pathway databases. We propose a new method for gene set analysis that is based on principal component analysis (PCA) of genes expression values in the gene set. PCA is an effective method for reducing high dimensionality and capture variations in gene expression values. However, one limitation with PCA is that the latent variable identified by the first PC may be unrelated to outcome. RESULTS: In the proposed supervised PCA (SPCA) model for gene set analysis, the PCs are estimated from a selected subset of genes that are associated with outcome. As outcome information is used in the gene selection step, this method is supervised, thus called the Supervised PCA model. Because of the gene selection step, test statistic in SPCA model can no longer be approximated well using t-distribution. We propose a two-component mixture distribution based on Gumbel exteme value distributions to account for the gene selection step. We show the proposed method compares favorably to currently available gene set analysis methods using simulated and real microarray data. SOFTWARE: The R code for the analysis used in this article are available upon request, we are currently working on implementing the proposed method in an R package.  相似文献   

7.
MOTIVATION: Current methods for multiplicity adjustment do not make use of the graph structure of Gene Ontology (GO) when testing for association of expression profiles of GO terms with a response variable. RESULTS: We propose a multiple testing method, called the focus level procedure, that preserves the graph structure of Gene Ontology (GO). The procedure is constructed as a combination of a Closed Testing procedure with Holm's method. It requires a user to choose a 'focus level' in the GO graph, which reflects the level of specificity of terms in which the user is most interested. This choice also determines the level in the GO graph at which the procedure has most power. We prove that the procedure strongly controls the family-wise error rate without any additional assumptions on the joint distribution of the test statistics used. We also present an algorithm to calculate multiplicity-adjusted P-values. Because the focus level procedure preserves the structure of the GO graph, it does not generally preserve the ordering of the raw P-values in the adjusted P-values. AVAILABILITY: The focus level procedure has been implemented in the globaltest and GlobalAncova packages, both of which are available on www.bioconductor.org.  相似文献   

8.
MOTIVATION: The field of microarray data analysis is shifting emphasis from methods for identifying differentially expressed genes to methods for identifying differentially expressed gene categories. The latter approaches utilize a priori information about genes to group genes into categories and enhance the interpretation of experiments aimed at identifying expression differences across treatments. While almost all of the existing approaches for identifying differentially expressed gene categories are practically useful, they suffer from a variety of drawbacks. Perhaps most notably, many popular tools are based exclusively on gene-specific statistics that cannot detect many types of multivariate expression change. RESULTS: We have developed a nonparametric multivariate method for identifying gene categories whose multivariate expression distribution differs across two or more conditions. We illustrate our approach and compare its performance to several existing procedures via the analysis of a real data set and a unique data-based simulation study designed to capture the challenges and complexities of practical data analysis. We show that our method has good power for differentiating between differentially expressed and non-differentially expressed gene categories, and we utilize a resampling based strategy for controlling the false discovery rate when testing multiple categories. AVAILABILITY: R code (www.r-project.org) for implementing our approach is available from the first author by request.  相似文献   

9.
MOTIVATION: The increasing use of DNA microarray-based tumor gene expression profiles for cancer diagnosis requires mathematical methods with high accuracy for solving clustering, feature selection and classification problems of gene expression data. RESULTS: New algorithms are developed for solving clustering, feature selection and classification problems of gene expression data. The clustering algorithm is based on optimization techniques and allows the calculation of clusters step-by-step. This approach allows us to find as many clusters as a data set contains with respect to some tolerance. Feature selection is crucial for a gene expression database. Our feature selection algorithm is based on calculating overlaps of different genes. The database used, contains over 16 000 genes and this number is considerably reduced by feature selection. We propose a classification algorithm where each tissue sample is considered as the center of a cluster which is a ball. The results of numerical experiments confirm that the classification algorithm in combination with the feature selection algorithm perform slightly better than the published results for multi-class classifiers based on support vector machines for this data set. AVAILABILITY: Available on request from the authors.  相似文献   

10.
Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies and early cancer detection. However, the current temporal gene expressions usually have few measuring time series levels; extracting information and identifying efficient treatment effects without temporal information are still a problem. A?dense temporal gene expression data set in bacteria shows that the gene expression has various patterns under different biological conditions. Instead of analyzing gene expression levels, in this paper we consider the relative change-rates of gene in the observation period. We propose a non-linear regression model to characterize the relative change-rates of genes, in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. Then, based on the parameter estimates, a chi-square test is proposed to test the equality of gene expression change-rates. Furthermore, the Mahalanobis distance is used for the classification of genes. The proposed methods are applied to the data set of 18?genes in P. aeruginosa expressed in 24?biological conditions. The simulation studies show that our methods perform well for analysis of temporal gene expressions.  相似文献   

11.
MOTIVATION: Two important questions for the analysis of gene expression measurements from different sample classes are (1) how to classify samples and (2) how to identify meaningful gene signatures (ranked gene lists) exhibiting the differences between classes and sample subsets. Solutions to both questions have immediate biological and biomedical applications. To achieve optimal classification performance, a suitable combination of classifier and gene selection method needs to be specifically selected for a given dataset. The selected gene signatures can be unstable and the resulting classification accuracy unreliable, particularly when considering different subsets of samples. Both unstable gene signatures and overestimated classification accuracy can impair biological conclusions. METHODS: We address these two issues by repeatedly evaluating the classification performance of all models, i.e. pairwise combinations of various gene selection and classification methods, for random subsets of arrays (sampling). A model score is used to select the most appropriate model for the given dataset. Consensus gene signatures are constructed by extracting those genes frequently selected over many samplings. Sampling additionally permits measurement of the stability of the classification performance for each model, which serves as a measure of model reliability. RESULTS: We analyzed a large gene expression dataset with 78 measurements of four different cartilage sample classes. Classifiers trained on subsets of measurements frequently produce models with highly variable performance. Our approach provides reliable classification performance estimates via sampling. In addition to reliable classification performance, we determined stable consensus signatures (i.e. gene lists) for sample classes. Manual literature screening showed that these genes are highly relevant to our gene expression experiment with osteoarthritic cartilage. We compared our approach to others based on a publicly available dataset on breast cancer. AVAILABILITY: R package at http://www.bio.ifi.lmu.de/~davis/edaprakt  相似文献   

12.
A Bayesian network classification methodology for gene expression data.   总被引:5,自引:0,他引:5  
We present new techniques for the application of a Bayesian network learning framework to the problem of classifying gene expression data. The focus on classification permits us to develop techniques that address in several ways the complexities of learning Bayesian nets. Our classification model reduces the Bayesian network learning problem to the problem of learning multiple subnetworks, each consisting of a class label node and its set of parent genes. We argue that this classification model is more appropriate for the gene expression domain than are other structurally similar Bayesian network classification models, such as Naive Bayes and Tree Augmented Naive Bayes (TAN), because our model is consistent with prior domain experience suggesting that a relatively small number of genes, taken in different combinations, is required to predict most clinical classes of interest. Within this framework, we consider two different approaches to identifying parent sets which are supported by the gene expression observations and any other currently available evidence. One approach employs a simple greedy algorithm to search the universe of all genes; the second approach develops and applies a gene selection algorithm whose results are incorporated as a prior to enable an exhaustive search for parent sets over a restricted universe of genes. Two other significant contributions are the construction of classifiers from multiple, competing Bayesian network hypotheses and algorithmic methods for normalizing and binning gene expression data in the absence of prior expert knowledge. Our classifiers are developed under a cross validation regimen and then validated on corresponding out-of-sample test sets. The classifiers attain a classification rate in excess of 90% on out-of-sample test sets for two publicly available datasets. We present an extensive compilation of results reported in the literature for other classification methods run against these same two datasets. Our results are comparable to, or better than, any we have found reported for these two sets, when a train-test protocol as stringent as ours is followed.  相似文献   

13.
14.
Leucine-responsive regulatory protein (Lrp) is a global regulatory protein that affects the expression of multiple genes and operons in bacteria. Although the physiological purpose of Lrp-mediated gene regulation remains unclear, it has been suggested that it functions to coordinate cellular metabolism with the nutritional state of the environment. The results of gene expression profiles between otherwise isogenic lrp(+) and lrp(-) strains of Escherichia coli support this suggestion. The newly discovered Lrp-regulated genes reported here are involved either in small molecule or macromolecule synthesis or degradation, or in small molecule transport and environmental stress responses. Although many of these regulatory effects are direct, others are indirect consequences of Lrp-mediated changes in the expression levels of other global regulatory proteins. Because computational methods to analyze and interpret high dimensional DNA microarray data are still an early stage, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe a Bayesian statistical framework for a posterior estimate of the standard deviation of gene measurements based on a limited number of replications. We also describe an algorithm to compute a posterior estimate of differential expression for each gene based on the experiment-wide global false positive and false negative level for a DNA microarray data set. This allows the experimenter to compute posterior probabilities of differential expression for each individual differential gene expression measurement.  相似文献   

15.
MOTIVATION: Extracting useful information from expression levels of thousands of genes generated with microarray technology needs a variety of analytical techniques. Mathematical programming approaches for classification analysis outperform parametric methods when the data depart from assumptions underlying these methods. Therefore, a mathematical programming approach is developed for gene selection and tissue classification using gene expression profiles. RESULTS: A new mixed integer programming model is formulated for this purpose. The mixed integer programming model simultaneously selects genes and constructs a classification model to classify two groups of tissue samples as accurately as possible. Very encouraging results were obtained with two data sets from the literature as examples. These results show that the mathematical programming approach can rival or outperform traditional classification methods.  相似文献   

16.
Statistical assessment of candidate gene effects can be viewed as a problem of variable selection and model comparison. Given a certain number of genes to be considered, many possible models may fit to the data well, each including a specific set of gene effects and possibly their interactions. The question arises as to which of these models is most plausible. Inference about candidate gene effects based on a specific model ignores uncertainty about model choice. Here, a Bayesian model averaging approach is proposed for evaluation of candidate gene effects. The method is implemented through simultaneous sampling of multiple models. By averaging over a set of competing models, the Bayesian model averaging approach incorporates model uncertainty into inferences about candidate gene effects. Features of the method are demonstrated using a simulated data set with ten candidate genes under consideration.  相似文献   

17.
Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided into two types: competitive and self-contained. Benefits of self-contained methods include that they can be used for genome-wide, candidate gene, or pathway studies, and have been reported to be more powerful than competitive methods. We therefore investigated ten self-contained methods that can be used for continuous, discrete and time-to-event phenotypes. To assess the power and type I error rate for the various previously proposed and novel approaches, an extensive simulation study was completed in which the scenarios varied according to: number of genes in a gene set, number of genes associated with the phenotype, effect sizes, correlation between expression of genes within a gene set, and the sample size. In addition to the simulated data, the various methods were applied to a pharmacogenomic study of the drug gemcitabine. Simulation results demonstrated that overall Fisher''s method and the global model with random effects have the highest power for a wide range of scenarios, while the analysis based on the first principal component and Kolmogorov-Smirnov test tended to have lowest power. The methods investigated here are likely to play an important role in identifying pathways that contribute to complex traits.  相似文献   

18.
19.
Gene class, ontology, or pathway testing analysis has become increasingly popular in microarray data analysis. Such approaches allow the integration of gene annotation databases, such as Gene Ontology and KEGG Pathway, to formally test for subtle but coordinated changes at a system level. Higher power in gene class testing is gained by combining weak signals from a number of individual genes in each pathway. We propose an alternative approach for gene-class testing based on mixed models, a class of statistical models that: a) provides the ability to model and borrow strength across genes that are both up and down in a pathway, b) operates within a well-established statistical framework amenable to direct control of false positive or false discovery rates, c) exhibits improved power over widely used methods under normal location-based alternative hypotheses, and d) handles complex experimental designs for which permutation resampling is difficult. We compare the properties of this mixed models approach with nonparametric method GSEA and parametric method PAGE using a simulation study, and illustrate its application with a diabetes data set and a dose-response data set.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号