首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

2.
Abstract: These experiments investigate the effect of block, by colchicine, of fast axonal transport in the cat's cervical sympathetic trunk (CST) on the superior cervical ganglion's choline acetyltransferase (ChAT) enzyme activity, acetylcholine (ACh) content, and ACh release. Electron microscopy on the segment of the CST exposed to colchicine 1 or 4 days earlier showed disappearance of microtubules and accumulation of vesicles and smooth membrane tubules but no disruption of the axonal cytomatrix. At 4 days following colchicine treatment, the number and size of synaptic boutons per grid square in the ganglion ipsilateral to the colchicine-treated CST were similar to those in the control ganglion. At 2 and 4 days following exposure of the CST to colchicine, ChAT activity in the ipsilateral ganglion was reduced to 76 ± 8 and 54 ± 6% of control values, respectively. ACh stores in the ganglia were also reduced (to 81 ± 6% of control values at 2 days and to 51 ± 5% of control values at 4 days). Ganglionic transmission and its sensitivity to blockade by hexamethonium during 2-Hz CST stimulation were not impaired at day 4 postcolchicine. ACh release evoked by 2-Hz stimulation of colchicine-treated axons was similar to release from untreated axons, despite the decrease in the ganglionic ACh content. In contrast, ACh release evoked by 20-Hz stimulation was depressed. The amount of ACh released during 5-Hz stimulation in the presence of vesamicol by the terminals of colchicine-treated axons was similar to that released by the terminals of untreated axons. These results suggest the following conclusions: (a) Colchicine-sensitive fast axonal transport contributes significantly to maintaining ChAT stores in preganglionic axon terminals. (b) The half-life of ChAT in sympathetic preganglionic terminals is ~4 days. (c) One consequence of colchicine-induced block of axonal transport is a reduced ACh content of preganglionic nerve terminals. (d) This decrease in ACh content appears to be the result of a loss in a reserve transmitter pool, whereas the size of the readily releasable compartment is maintained.  相似文献   

3.
We found atrial natriuretic peptide (ANP), known as a humoral factor in regulating body fluid volume and blood pressure, in considerable quantities in rat superior cervical sympathetic ganglion (SCG) by radioimmunoassay after separation with reverse-phase HPLC. Although the ANP content of the immature rat 1 week after birth was low, it doubled at 2 weeks and then increased gradually, until it reached the adult level. Denervation caused a rapid decrease in the ANP content to half of the intact SCG level after 3 h, which then fell to 10% of the control value on day 2 after operation. The time course of ANP content reduction after denervation was similar but rather faster than that of activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, an observation suggesting that ANP may partly contribute to cholinergic synaptic transmission. On the other hand, axotomy produced a rather slower decrease in the ANP content than did denervation. Enucleation and sialoadenectomy also caused a considerable reduction of the ANP content. Thus, part of the ANP found in the ganglion is apparently transported from sympathetically innervated extraganglionic organs via retrograde axoplasmic flow.  相似文献   

4.
The concentration of naturally synthesized nerve growth factor (NGF) was measured in various tissues of adult rats, using a highly sensitive two-site enzyme immunoassay. The highest concentration was found in the superior cervical sympathetic ganglion (SCG). Transection of the postganglionic external carotid nerve (ECN) reduced the ganglionic level of NGF more than did section of the internal carotid nerve (ICN). When both the preganglionic nerve and the ECN were cut, the ganglionic NGF level decreased even more. On the other hand, when the preganglionic nerve and the ICN were both sectioned, leaving the ECN intact, endogenous NGF content in the SCG was significantly enhanced 3-9 h after operation. Bilateral extirpation of submaxillary gland produced a rapid decrease in ganglionic NGF 3-6 h after operation, and even unilateral removal of one salivary gland caused a decrease in both ganglia, which was however much greater in the ipsi- than in the contralateral ganglion. Removal of the eyeballs caused a much smaller reduction in ganglionic NGF than did removal of the glands. These results suggest that the endogenous NGF that accumulates in the SCG is mostly synthesized in the submaxillary gland rather than in the iris, and that it is transported to the SCG, mostly via the ipsilateral ECN.  相似文献   

5.
Abstract: Striatal cholinergic interneurons have been shown to receive input from Striatal γ-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABAA and the GABA6 receptor. Using in vivo microdialysis, we have studied the effect of intrastriatal application of the GABAA-selective compounds muscimol and bicuculline and the GA- BAB-selective compounds baclofen and 2-hydroxysaclofen, agonists and antagonists, respectively, at GABA receptors, on the output of Striatal acetylcholine (ACh). Intrastriatal infusion of 1 and 10 μmol/L concentrations of the GABAA antagonist bicuculline resulted in a significant increase in Striatal ACh output, whereas infusion of 1 and 10 /μmol/L concentrations of the GABAA agonist muscimol significantly decreased the output of Striatal ACh. Both compounds were ineffective in changing the output of Striatal ACh at lower concentrations. Infusion of concentrations up to 100 μmol/L of the GABAB-selective antagonist 2-hydroxy-saclofen failed to affect Striatal ACh output, whereas infusion of 10 and 100 μmol/L baclofen, but not 0.1 and 1 μmol/L baclofen, significantly decreased the output of Striatal ACh. Thus, agonist-stimulation of GABAA and GABAB receptors decreases the output of striatal ACh in a dose-dependent fashion, whereas the GABAergic system appears to inhibit tonically the output of striatal ACh via GABAA receptors, but not via GABAB receptors. We hypothesize that although GABAA mediated regulation of striatal ACh occurs via GABA receptors on the cholinergic neuron, the GABAB mediated effects may be explained by presynaptic inhibition of the glutamatergic input of the striatal cholinergic neuron.  相似文献   

6.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

7.
We have investigated the effect of veratridine on DOPA (3,4-dihydroxyphenylalanine) accumulation by the superior cervical ganglion of the rat. Incubation of the ganglion with veratridine (50 microM) causes a 10-fold increase in the rate of DOPA accumulation. Veratridine-stimulated DOPA accumulation is blocked by tetrodotoxin, but not by cholinergic or adrenergic antagonists or by decentralization of the ganglion. The cyclic nucleotide 8-bromo cyclic GMP does not increase DOPA accumulation, and 8-bromo cyclic AMP causes only a 2-fold increase in DOPA accumulation, which is additive with the effect of veratridine. Thus, the action of veratridine appears to be independent of these cyclic nucleotides. The effect of veratridine on DOPA accumulation is probably due to a stable modification of tyrosine hydroxylase, since an increase in tyrosine hydroxylase activity can be measured in cell-free extracts of veratridine-treated ganglia. Both the increase in DOPA accumulation and the stable activation of tyrosine hydroxylase are dependent upon extracellular Ca2+. The activation of tyrosine hydroxylase by veratridine may be mediated by the depolarization of, and the subsequent entry of Ca2+ into, ganglionic neurons.  相似文献   

8.
Effects of Lead In Vivo and In Vitro on GABAergic Neurochemistry   总被引:2,自引:1,他引:1  
Abstract: Alterations in aspects of neurotransmission utilizing -γ-aminobutyric acid (GABA) are associated with in vivo exposure of rats to lead at doses that do not produce convulsions, but sensitize animals to convulsant agents. These effects are observed regionally and include: decreased GABA levels in cerebellum; increased activity of glutamate decarboxylase (GAD) in caudate; and decreased GABA release (both resting and K+-stimulated) in cortex, caudate, cerebellum and substantia nigra. Sodium-dependent uptake of GABA by synaptosomes of cerebellum, substantia nigra and caudate was also affected: in these regions, affinity (Km) was increased and maximal velocity (Vmax) was reduced. Sodium-independent binding of GABA to synaptic membranes was increased in cerebellum, but was observed only when tissue was Tritonized and prepared without freezing and washing. No effects on GAD or on GABA uptake, release, or binding were observed when lead was added to brain tissue in vitro in concentrations as high as 100 μM. The results suggest that lead may produce chronic inhibition of presynaptic GABAergic function, notably in the cerebellum, which is associated with supersensitivity of postsynaptic GABA receptors. Failure of lead to affect GABAergic function in vitro may indicate that these effects are secondary to another neurotoxic action of lead in the CNS or are consequent to a nonneuronal metabolic action of lead.  相似文献   

9.
Intracranial microdialysis was used to investigate the origin of extracellular gamma-aminobutyric acid (GABA) in the ventral pallidum. Changes in basal GABA levels in response to membrane depolarizers, ion-channel blockers, and receptor agonists were determined. Antagonism of Ca2+ fluxes with high Mg2+ in a Ca(2+)-free perfusion buffer decreased GABA levels by up to 30%. Inhibition of voltage-dependent Na+ channels by the addition of tetrodotoxin also significantly decreased basal extracellular GABA concentrations by up to 45%, and blockade of Ca2+ and Na+ channels with verapamil reduced extracellular GABA by as much as 30%. The addition of either the GABAA agonist, muscimol, or the GABAB agonist, baclofen, produced a 40% reduction in extracellular GABA. GABA release was stimulated by high K+ and the addition of veratridine to increase Na+ influx. High K(+)-induced release was predominantly Ca(2+)-dependent, whereas the effect of veratridine was potentiated in the absence of extracellular Ca2+. Both high K(+)- and veratridine-induced elevations in extracellular GABA were inhibited by baclofen, whereas only veratridine-induced release was antagonized by muscimol. These results demonstrate that at least 50% of basal extracellular GABA in the ventral pallidum is derived from Ca(2+)- or Na(+)-dependent mechanisms. They also suggest that Na(+)-dependent release of GABA via reversal of the uptake carrier can be shown in vivo.  相似文献   

10.
Many reports have suggested that gamma-aminobutyric acid (GABA) may play a role in organophosphate-induced convulsions. The balance between GABA and acetylcholine (ACh) in the brain also has been suggested by some investigators to be related to brain excitability. We examined these questions by studying the levels of GABA and ACh and the ratios of GABA to ACh in rat striata and cerebella (two major motor control areas in the CNS) after the administration of soman, an organophosphate acetylcholinesterase inhibitor also known as nerve gas. Male Sprague-Dawley rats weighing 250-300 g were injected subcutaneously with three different doses of soman: a subconvulsive dose of 40 micrograms/kg (approximately 30% of the ED50 for convulsions in rats), a convulsive dose of 120 micrograms/kg (approximately one ED50 for convulsions), and a higher convulsive dose of 150 micrograms/kg (approximately 120% of the ED50 for convulsions). The incidence and severity of convulsions were monitored in individual rats until they were sacrificed by focused microwave irradiation of the head at the following time points after soman administration: 4 min, a time prior to the onset of convulsions; 10 min, the time of onset of convulsions; 1 h, the time of peak convulsive activity; and 6 h, a time at which rats were recovering from convulsions. Results showed that in rat striata and cerebella, neither changes in levels of GABA and ACh nor changes in ratios of GABA to ACh were related to soman-induced convulsions, i.e., none of the changes in either levels or ratios of these two neurotransmitters were related to the initiation of, maintenance of, or recovery from soman-induced convulsions.  相似文献   

11.
The time courses of changes of three enolase isozymes (alpha alpha, alpha gamma, and gamma gamma), S-100 protein, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), ornithine decarboxylase (ODC), beta-galactosidase, and glucose-6-phosphate dehydrogenase (G6PDH) were examined from 1 to 14 days after cutting of the preganglionic nerve (denervation) or the postganglionic nerve (axotomy) of the superior cervical sympathetic ganglion (SCG) of the rat. The wet weight and protein content in the axotomized SCG increased continuously, to nearly twice those of the denervated SCG for 1-2 weeks after the operations. Among enolase isozymes in the SCG, neuron-specific gamma gamma-enolase decreased rapidly after denervation and stayed at a low level for 2 weeks, whereas the isozyme remained almost unchanged after axotomy. On the contrary, ganglionic alpha alpha-enolase and the alpha gamma-hybrid form increased remarkably to reach a maximum at the second day after axotomy, and remained above control for 1 to 2 weeks; these two enolase isozymes showed little change after denervation. Denervation caused a much larger increase than did axotomy in the ganglionic S-100 protein, an astrocyte-specific protein, during the first week after the operation, while the protein content decreased after 2 weeks of either denervation or axotomy. CNPase, a myelin-associated enzyme, rose suddenly 2 days after axotomy, and remained at a rather high level compared with the denervated ganglion, which showed little variation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

13.
Abstract: The experiments described in this paper were designed to test whether increasing choline availability over normal physiological levels increases acetylcholine synthesis in the cat's superior cervical ganglion. When ganglia were perfused with Krebs solution, an increase in the medium's choline concentration over physiological (10−3M) levels increased tissue choline but did not increase tissue acetylcholine or the release of acetylcholine from stimulated ganglia. However, increasing plasma choline in the whole animal increased ganglionic acetylcholine levels. The basis for this difference in the effects of in vivo and in Vitro exposure to elevated choline levels on the tissue acetylcholine content was found to involve plasma factor(s), rather than indirect actions of choline, and the acetylcholine content of isolated ganglia was increased when the tissue was perfused with plasma, instead of Krebs solution, containing 10−3M-choline. The extra acetylcholine generated by this procedure was associated with a subsequent transient increase in transmitter release during short intervals of stimulation, but most of the extra acetylcholine was not readily available for release from stimulated ganglia. It is concluded that increasing choline available to sympathetic ganglia over physiological concentration does not have a sustained effect on the turnover of releasable transmitter under the conditions of these experiments.  相似文献   

14.
Abstract: Male Sprague-Dawley rats (325–350 g) were anesthetized with urethane (1.5 g/kg i.p.) and treated with physiological saline, Aspartame (APM; 552 μmol/kg), or tyrosine (Tyr; 552 μmol/kg). Ganglionic transmission and the synthesis of dopamine (DA) and norepinephrine (NE) were measured in the superior cervical ganglion (SCG) following electrical stimulation of the cervical sympathetic trunk (CST). When the CST was stimulated with single pulses, neither APM nor Tyr affected the synthesis of NE or DA. However, in response to low- (5 Hz, 20 s) and high- (20 Hz, 20 s) frequency pulses, the metabolism of DA was increased (p > 0.05), but to the same extent after saline, APM, or Tyr. In rats stimulated with similar low- and high-frequency pulses, the synthesis of NE was increased significantly (p > 0.05) after Tyr, but not after APM or saline. In saline-treated controls, ganglionic transmission was not changed in response to single pulses, or low- or high-frequency stimulation. However, after treatment with APM, ganglionic transmission was depressed significantly (p > 0.01) in response to high-frequency stimulation (single: 0.46 ± 0.09 mV; low: 0.39 ± 0.07 mV; high: 0.27 ± 0.07 mV). After treatment with Tyr, ganglionic transmission was depressed significantly (p > 0.05) in response to both low- and high-frequency stimulation (single: 0.44 ± 0.04 mV; low: 0.22 ±0.12 mV; high: 0.26 ± 0.07 mV). In the nonstimulated SCG, l-3,4-dihydroxyphenylalanine (25 mg/kg) caused a rapid, significant (p > 0.01) increase in the synthesis and metabolism of DA, but not of NE. Treatment with nialamide (200 mg/kg i.p.) followed by electrical stimulation (15 Hz, 15 min) of the CST caused a significant (p > 0.05) increase of both NE and DA in the stimulated SCG. It is concluded that there are both similarities and differences in the regulation of the synthesis of NE and in the modulation of ganglionic transmission after the administration of the precursors APM and Tyr. The results indicate that caution is needed in comparing the neurochemical and neurophysiological effects of different catecholamine precursors.  相似文献   

15.
Abstract: In the present paper, we report an analysis of acetylcholinesterase molecular forms in the bovine caudate nucleus and superior cervical ganglion. We show that: (1) The superior cervical ganglion contains a significant proportion (~ 15%) of collagen-tailed forms (mostly A12 and A8), but these molecules are found only as traces (ca. 0.002%) in the caudate nucleus, even in favorable extraction conditions (i.e., in the presence of 1 m -NaCl, 5 mm -EDTA, 1% Triton X-100). (2) The bulk of acetylcholinesterase corresponds to globular forms, mostly the tetrameric G4 and the monomeric G1 forms, with a smaller proportion of the dimeric G2 form. (3) The tetrameric enzyme exists as a minor soluble component (GS4) that does not interact with Triton X-100, and a major hydrophobic component (GH4) that is partially solubilized in the absence of detergent in the caudate nucleus, but not in the superior cervical ganglion. (4) The monomeric G1 form presents a marked hydrophobic character, as indicated by its interaction with Triton X-100, although it may be solubilized in large part in the absence of detergent in both tissues. (5) The detergentsolubilized forms aggregate upon removal of detergent. This property disappears after partial purification of G4) that does not interact with Triton X-100, and a major hydrophobic component (GH4, but is restored upon addition of an inactivated crude extract, indicating that it is attributable to interactions with other hydrophobic components. (6) The proportions of molecular forms solubilized in detergent-free buffers vary with the ionic composition of the medium. Repeated extractions of caudate nucleus in Tris-HCl buffer produce a larger overall yield of G1 form (e.g., 40%) than appears in a single quantitative detergent solubilization (<15%). This G1 form apparently derives in part from a pool of GH4 form. (7) However, detergents that allow a quantitative solubilization of acetylcholinesterase yield the same proportions of forms (about 85% G4) independently of the ionic conditions. (8) Modifications of the molecular forms occur spontaneously during purification, or storage of the crude aqueous ex-tracts, in a manner that depends on the ionic conditions. In Tris-HCl buffer, G1 is converted into a well-defined 7.5S form. In Ringer, polydisperse components are formed. The effects observed in Ringer cannot be reproduced by addition of 5 mm -Ca2- to the Tris buffer either during or after extraction. (9) Proteases, such as pronase, convert the hydrophobic forms into molecules that do not appear to interact with Triton X-100, and do not aggregate in its absence. These results raise fundamental questions regarding the status of acetylcholinesterase in situ, the structure and interactions of its molecular forms. They are discussed with reference to previous publications.  相似文献   

16.
Superior cervical ganglion (SCG) may play a modulatory role on ventilatory control through its efferent sympathetic fibres, which innervate cells in the carotid bodies. In this study the in vivo effect of acute hypoxia versus normoxia on arachidonic acid (AA) metabolism was investigated in cat SCG. Using SCG homogenate AA was incorporated into glycerolipids of normoxic SCG in the following order: neutral glycerolipids > phosphatidylcholine (PtdCh) > phosphatidylinositol (PtdIns) > phosphatidylethanolamine (PtdE) > phosphatidylserine (PtdS) > and phosphatidic acid (PA). In vivo hypoxic treatment caused a significant decrease in incorporation of [1-14C]AA into PtdIns. Hypoxia had no significant effect on the level of AA radioactivity in diacylglycerol (DAG) as compared to control but significantly enhanced the level of arachidonoyl-CoA (AA-CoA) radioactivity. It was observed that dopamine (DA) one of the most important neurotransmitter in SCG decreases AA uptake into phospholipids of normoxic SCG. In normoxic SCG, DA significantly decreased, AA incorporation into PtdCh, PtdIns and DAG. Moreover, DA decreased the level of AA-CoA radioactivity. Hypoxia and dopamine has no effect on AA metabolism in medulla oblongata isolated from the same animals. These results indicate that arachidonic acid metabolism in SCG is sensitive to hypoxia and dopamine action. Moreover, these results indicate that hypoxia inhibits selectively AA incorporation on the level of acylCoA-lysophosphatidylinositol-acyltransferase.  相似文献   

17.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

18.
Contents of the three forms (alpha alpha, alpha gamma, and gamma gamma) of enolase isozymes and S-100 protein in superior cervical sympathetic ganglia (SCG) excised from rats were determined by the sensitive method of enzyme immunoassay, after application of various forms of stimulation, during incubation for 3 h at 37 degrees C in vitro. The amounts of the three forms of enolase isozymes and of S-100 protein in the SCG were not altered by preganglionic or postganglionic stimulation (10 Hz) or by the addition of acetylcholine (1 mM) or a high concentration of K+ (70 mM) to the incubation medium. Norepinephrine (NE; 50 microM), as well as isoproterenol (200 microM) or 3,4-dihydroxy phenylethylamine (dopamine; 200 microM), increased the ganglionic alpha alpha and alpha gamma enolase content to 1.5 to 2.0 times the control level, whereas NE tended to slightly decrease the gamma gamma enolase content. The increase in the alpha isozymes did not appear until after 2 to 3 h of incubation with this agent as a result of an increase in protein synthesis. Propranolol, an adrenergic antagonist, partly inhibited the NE-induced increase in both alpha alpha and alpha gamma enolases. NE and its agonists also considerably increased the S-100 protein level in the SCG; however, the effect developed within half an hour of incubation as a result of the conversion of the bound S-100 protein to the water-soluble form, and did not greatly increase thereafter. Cyclic AMP (1 mM) produced the same kind of increase in the ganglionic S-100 protein content as NE did.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Higher GABA Concentrations in Fallopian Tube Than in Brain of the Rat   总被引:6,自引:5,他引:6  
Abstract: The GABA content was determined simultaneously in two peripheral organs, i.e., ovary and Fallopian tube. Moreover, the effects of inhibitors of glutamate decarboxylase or γ-aminobutyrate transaminase (GABA-T) on the GABA concentrations of the two organs were examined, to point out similarities and differences between central and peripheral pathways of GABA biosynthesis and degradation. In ovary, GABA concentration was found to be about 30% of that in total brain tissue. Furthermore, isoniazid and thiosemicarbazide caused significant reduction of GABA levels in peripheral organs. In contrast to the CNS, aminooxyacetic acid failed to increase, but even produced a significant diminution in peripheral GABA content. Gabaculine did not change GABA levels. In conclusion, it has been demonstrated for the first time that a peripheral organ, i.e. fallopian tube, contained higher GABA concentrations than the CNS. On the other hand, in the organs examined GABA seemed to be synthesized similarly, but metabolized by a pathway different from that in the brian.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号