首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Apart from being a prominent (inhibitory) neurotransmitter that is widely distributed in the central and peripheral nervous system, -aminobutyric acid (GABA) has turned out to exert trophic actions. In this manner GABA may modulate the neuroplastic capacity of neurons and neuron-like cells under various conditions in situ and in vitro. In the superior cervical ganglion (SCG) of adult rat, GABA induces the formation of free postsynaptic-like densities on the dendrites of principal neurons and enables implanted foreign (cholinergic) nerves to establish functional synaptic contacts, even while preexisting connections of the preganglionic axons persist. Apart from postsynaptic effects, GABA inhibits acetylcholine release from preganglionic nerve terminals and changes, at least transiently, the neurochemical markers of cholinergic innervation (acetylcholinesterase and nicotinic receptors). In murine neuroblastoma cells in vitro, GABA induces electron microscopic changes, which are similar in principle to those seen in the SCG. Both neuroplastic effects of GABA, in situ and in vitro, could be mimicked by sodium bromide, a hyperpolarizing agent. In addition, evidence is available that GABA via A- and/or B-receptors may exert direct trophic actions. The regulation of both types of trophic actions (direct, receptor-mediated vs. indirect, bioelectric activity dependent) is discussed.Special issue dedicated to Dr. Claude Baxter.  相似文献   

2.
In the superior cervical ganglion (SCG) of rats, the interaction of sodium bromide (NaBr) with various drugs which interfere with the GABA system, such as 3-(4-chlorophenyl)-4-aminobutyrate [( + )baclofen, Bac], ( + )bicuculline (Bic), picrotoxin (Pic) and chlorpromazine (CPZ), and the effects of NaBr on the K+-induced release of [3H]acetylcholine ([3H]ACh) were studied in vitro. The effects on the evoked potentials induced by preganglionic stimulation were analysed in situ. The in vitro experiments revealed that 1 mM NaBr inhibits both the basal and the K+-induced release of [3H]ACh in a Ca2+-dependent manner. This NaBr effect was additive with the similar effect of the GABA agonist Bac, but it could not be blocked with any of the drugs applied. In vivo, 1 mM NaBr depressed the amplitude of the evoked potentials in the SCG. It is concluded that, in the SCG of rats, NaBr interacts with the presynaptic and postsynaptic membranes. The inhibitory effects of NaBr on both the [3H]ACh release and the potentials evoked by preganglionic stimulation cannot be attributed to a direct interference with GABA receptor complexes; some other binding site/s on the presynaptic and postsynaptic membranes might be responsible for the bromide-induced reduction of the synaptic transmission in the SCG of rats.  相似文献   

3.
Levels of cyclic nucleotides and ornithine decarboxylase (ODC) activity were examined following the application of various kinds of stimuli to superior cervical sympathetic ganglia (SCG), nodose ganglia, and vagus nerve fibers excised from the rat. The level of cyclic GMP in the SCG rose rapidly to about 4.5- to 7.5-fold the unstimulated control with 10 min of incubation after applications of preganglionic electrical stimulation (10 Hz), acetylcholine (ACh; 1 mM), or high extracellular K+ ( [K+]0, 70 mM). The cyclic GMP level in nodose ganglia was increased less than in the SCG by either ACh or high [K+]0 but was not affected by ACh in vagus fibers. Cyclic AMP in the SCG was also increased about 4- to 5.5-fold over the control within 10 min with the addition of ACh, norepinephrine (NE; 0.05 mM), or high [K+]0. Although NE caused a small increase in cyclic AMP, neither ACh nor high [K+]0 produced any appreciable change in nodose ganglia or vagus fibers. The ODC activity in the SCG was increased by preganglionic stimulation of 3- to 4-hr duration but not by a shorter period. A similar change in ODC activity was caused by the addition of oxotremorine (1 mM), isoproterenol (0.1 mM), NE, cyclic AMP (1 mM), or dibutyryl cyclic GMP (1 mM). The effect was exaggerated by the further addition of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The increase in ODC activity caused by ACh was abolished by a muscarinic cholinergic antagonist, atropine (0.01 mM), and following axotomy for a week, but not by a nicotinic antagonist or by denervation in the SCG. A similar increase in ganglionic ODC activity by NE was inhibited by an adrenergic blocker, propranolol (0.01 mM), and following axtotomy for a week, but not by denervation. Cholinergic or adrenergic stimulation did not cause an increase in ODC activity in nodose ganglia or vagus fibers. These results suggest that the stimulation-induced increase in ODC activity occurs in postganglionic neurons rather than in satellite glial cells and is mediated by muscarinic cholinergic or adrenergic receptors. The process appears to involve cyclic nucleotide-mediated protein biosynthesis in the SCG.  相似文献   

4.
The effects of electrical stimulation, γ-aminobutyric acid (GABA), acetylcholine (ACh), norepinephrine (NE), 5-hydroxytryptamine (5-HT), GABA agonists and bicuculline were studied on spontaneous movements of isolated rat oviduct. The tissue did not respond to electrical stimulation or to GABA, NE and 5-HT when added to the incubation medium. ACh produced contractions related to its concentration which were maximal at the diestrous-1 phase when GABA caused a 20% rise in the ACh contraction. This effect was mimicked by GABA agonists whereas it was suppressed by bicuculline. β-Estradiol benzoate (EB) increased ACh contractions in diestrous-1 and in the late proestrous phases. GABA did not modify the EB effect. Progesterone did not modify ACh contractions in any of the studied phases. These findings suggest a possible modulatory role for GABA on ACh responses in the isolated rat oviduct.  相似文献   

5.
The aim of this study was to obtain neurochemical information on the possible role of acetylcholine (ACh) and -aminobutyric acid (GABA) as neurotransmitters in the pontine reticular formation (PRF). We studied the uptake of labeled choline and GABA, as well as the release of this amino acid and of ACh, in PRF slices of the rat. In addition, choline acetyltransferase, acetylcholinesterase and glutamate decarboxylase activities were assayed in PRF homogenates. The uptake of GABA was strictly Na+-dependent, whereas choline uptake was only partially Na+-dependent. The release of both ACh and GABA was stimulated by K+-depolarization, but only the former was Ca2+-dependent. Choline acetyltransferase activity in the PRF was 74% of that in the striatum, whereas acetylcholinesterase activity was considerably lower. Glutamate decarboxylase activity in the PRF was about half that observed in the striatum. These findings support the possibility that both ACh and GABA may act as neurotransmitters in the rat PRF.  相似文献   

6.
Experimental degeneration was used in this study to determine if the hypoglossal nerve implanted already in the superior cervical ganglion of adult rat under GABA treatment has established morphologically-identifiable synapses with the dendrites of principal ganglion cells. The implanted hypoglossal nerve trunk was cut in a re-operation, and the ganglionic samples were studied by electron microscopy after 0, 6, 12, 24 and 48 h survival times. First signs of degenerative changes were found in the myelinated and non-myelinated axons alike, 6 h after axotomy. The fine-structural signs of degeneration resembled those of the preganglionic nerve fibres. Degenerating nerve terminals establishing synaptic contacts with the dendrites of the principal ganglion cells were also seen, indicating that the axonal sprouts of the implanted hypoglossal nerve established synaptic contacts with the ganglion cells. It remained, however, to be elucidated whether or not these synapses of the hypoglossal nerve are functionally active contacts while the preganglionic innervation is also present within the ganglion.  相似文献   

7.
Fasciculin II, a potential inhibitor of acetylcholinesterase (AChE), was tested on two types of Aplysia cholinergic receptors: H type, opening Cl- channels; and D type, opening cationic channels. Evoked postsynaptic inhibitory responses and responses to ionophoretic application of acetylcholine (ACh) or carbachol onto H-type receptors were potentiated in the presence of fasciculin II at 10(-9) M, whereas the same concentration of this drug was without effect on the evoked postsynaptic excitatory responses or on the application of ACh or carbachol on D-type receptors. The observed effects of fasciculin II were identical to those obtained with other inhibitors of AChE on the same preparation. The facilitatory effect on the carbachol response in H-type cells indicates that fasciculin II, as other AChE inhibitors, does not act on H-type synapses solely by blocking the hydrolysis of ACh. We concluded that fasciculin II was a good inhibitor of acetylcholinesterase on neuronal preparations in vivo. The results are further discussed as a new element in favor of a previously proposed hypothesis of a molecular interaction between AChE and ACh H-type receptors.  相似文献   

8.
Acetylcholinesterase (AChE) hydrolyses acetylcholine (ACh) ensuring the fast clearance of released neurotransmitter at cholinergic synapses. Many studies led to the hypothesis that AChE and the closely related enzyme butyrylcholinesterase (BChE) may play other, non-hydrolytic roles during development. In this review, we compare data from in vivo studies performed on invertebrate and vertebrate genetic models. The loss of function of ache in these systems is responsible for the appearance of several phenotypes. In all aspects so far studied, the phenotypes can be explained by an excess of the undegraded substrate, ACh, leading to misfunction and pathological alterations. Thus, the lack of AChE catalytic activity in the mutants appears to be solely responsible for the observed phenotypes. None of them appears to require the postulated adhesive or other non-hydrolytic functions of AChE.  相似文献   

9.
There is considerable evidence that adenosine 3, 5-cyclic monophosphate (cAMP) is involved in the modulation of synaptic transmission in the guinea pig superior cervical ganglion (SCG). Presynaptic muscarinic receptors are known to attenuate, when activated, acetylcholine (ACh) release in the periphery as well as in the brain. Thus, the possible relationship between ganglionic adenylate cyclase activity and the output of ACh from electrically stimulated ganglia, preloaded with [3H]choline, was investigated. The muscarinic agonist oxotremorine significantly reduced in a dose-dependent manner the electrically evoked neurotransmitter release. The adenylate cyclase inhibitor N-(cis-2-phenylcyclopentyl)azacyclotridecan-2-imine hydrochloride (RMI 12330 A) also decreased ACh output. The inhibitory effects of these two drugs were additive. In crude ganglion membrane fractions oxotremorine significantly inhibited adenylate cyclase activity. The results indicate that drugs capable of inhibiting adenylate cyclase, significantly decrease ACh output from preganglionic nerve terminals in guinea pig SCG.  相似文献   

10.
Nematode movement is reliant upon the somatic musculature that runs longitudinally along the body wall. Neuromuscular synapses occur in the ventral and dorsal cords and employ the excitatory neurotransmitter, acetylcholine (ACh), for modulation of muscle activity. Acetylcholine activity is terminated by hydrolysis by acetylcholinesterase (AChE). Here, Charles Opperman and Stella Chang discuss the molecular forms and potential role of this enzyme.  相似文献   

11.
The distributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the superior cervical ganglion (SCG) of the cat were determined by electron microscopy (EM) with the bis- (thioacetoxy)aurate (I), or Au(TA)2, method. Before the infusion of fixative, one of the enzymes was selectively, irreversibly inactivated in vivo, as confirmed by light microscope (LM) examination of sections of the stellate ganglion stained by the more specific copper thiocholine method. Physostigmine-treated controls, for inhibition of AChE or BuChE, were stained concomitantly with tissue for enzyme localization by the Au(TA)2 method for EM examination in each experiment. It was concluded that most of the AChE of the cat SCG is present in the plasma membranes of the preganglionic axons and their terminals, and in the dendritic and perikaryonal plasma membranes of the postsynaptic ganglion cells. BuChE is confined largely to the postsynaptic neuronal plasma membranes. Reasons for the discrepancies between the localizations found by the present direct EM observations and those deduced earlier from LM comparisons of normal and denervated SCG are discussed. It is proposed that a trophic factor released by the preganglionic terminals is probably required for the synthesis of postsynaptic neuronal AChE, and that BuChE may serve as a precursor of AChE at that site.  相似文献   

12.
Neuroleptics (haloperidol) closapine, pimozid, chlorpromazine) diminished the level of free (functionally active) form of acetylcholine (ACh), and, to some extent, the bound form of ACh; they changed the content of the labile-bound (vesicular) form of ACh and weakly influenced the choline-acetyltranspherase activity in the basal ganglia of the rat brain 5 to 30 min after the injection. In contrast to the inhibitory action on the acetyl-cholinesterase (AChE) activity in vitro, most of the neuroleptics, except closapine, increased the AChE activity in vivo. These results indicate that the neuroleptics activate ACh-metabolism and probably stimulate the cholinergic structure in the basal ganglia of the brain; the AChE activity may serve as a criterion of such stimulating action of neuroleptics.  相似文献   

13.
Peripherally located parts of spider mechanosensory neurons are modulated by several neurotransmitters released from apposed efferent fibers. Activities of acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) and ACh degrading enzyme acetylcholine esterase (AChE) were previously found in some efferent fibers. ChAT activity was also present in all the mechanosensory neurons, while AChE activity was only found in some. We show that spider mechanosensory neurons and probably some efferent neurons are immunoreactive to a monoclonal antibody against muscarinic ACh receptors (mAChRs). However, application of muscarinic agonists did not change the physiological responses or membrane potentials of neurons in the lyriform organ VS-3. Similarly, the sensitivities of the neurons of trichobothria (filiform hairs) remained unchanged after application of these agonists. Therefore, activation of mAChRs may only modulate the function of spider mechanosensory neurons indirectly, for example, by affecting the release of other transmitter(s). However, a subgroup of VS-3 neurons was inhibited by ACh, which also depolarized the membrane similar to these neurons’ responses to GABA, suggesting that ACh activates anion channels in these neurons. Interestingly, all of the neurons responding to ACh were the rapidly adapting Type A neurons that were previously shown to express AChE activity.  相似文献   

14.
The effects of the lectin concanavalin A (Con A), on the kinetics of desensitization of the responses of voltage clampedAchatina fulica LP5 neuron to microperfused acetylcholine (ACh) and GABA were compared. Both ACh and GABA elicited increases in chloride conductance which decayed biphasically during prolonged applications of these agonists; an initial rapid decay was followed by a later slow decay. Con A (5 g/ml) accelerated both the fast and the slow decays of responses to ACh. Con A (5 g/ml) also accelerated the fast decay of responses to GABA, but the slow decay was unaffected, even by 20 g/ml or more of the lectin. It is suggested that, at least in the case of GABA receptor, the fast and slow decays involve distinct desensitization kinetics. The effects of Con A on the desensitization of the ACh and GABA responses were reversed byd-mannose, a competitive and specific inhibitor of Con A binding to membrane sugar residues. These results provide further evidence that receptor desensitization can be influenced by perturbing the sugar moieties associated with the subunits comprising these signalling macromolecules. The carbohydrate residues may play an important role in regulating desensitization of transmitter receptors.Abbreviations ACh acetylcholine - Con A concanavalin A  相似文献   

15.
Abstract: Experiments were designed to test the hypothesis that ganglionic butyrylcholinesterase (BuChE) is derived from acetylcholinesterase (AChE). At 5 to 8 days following preganglionic denervation of the right superior cervical ganglion (SCG), cats were given sarin, 2.0 μmol/kg, i.v. At intervals of 1 h and 1, 2, 3, 6, 11, and 22 days later, they were killed, and the AChE and BuChE contents of both SCG and both stellate ganglia (StG) were assayed. The regeneration of AChE in the normal ganglia occurred in two phases: an initial rapid phase, to 25-40% of control activity in 1 day, and a slow phase, to approximately 70% of control activity in 22 days. BuChE reached approximately 85% of control activity in normal SCG and StG at 22 days. In the denervated SCG, AChE activity reached a maximum of approximately 17% of normal at 1 day, the value prior to the administration of sarin, and did not increase appreciably above this subsequently. BuChE activity in the denervated SCG reached approximately 50% of normal ganglia at 22 days. At each interval, its activity approached 55% of that of the contralateral normal SCG, the value found in the denervated SCG prior to the administration of sarin. Hence, the regeneration of BuChE appears to be independent of the presence of AChE in the neuropil. The origin of ganglionic BuChE remains obscure.  相似文献   

16.
Agrin plays an organizing role in the formation of sympathetic synapses   总被引:5,自引:0,他引:5  
Agrin is a nerve-derived factor that directs neuromuscular synapse formation, however its role in regulating interneuronal synaptogenesis is less clear. Here, we examine agrin's role in synapse formation between cholinergic preganglionic axons and sympathetic neurons in the superior cervical ganglion (SCG) using agrin-deficient mice. In dissociated cultures of SCG neurons, we found a significant decrease in the number of synapses with aggregates of presynaptic synaptophysin and postsynaptic neuronal acetylcholine receptor among agrin-deficient neurons as compared to wild-type neurons. Moreover, the levels of pre- and postsynaptic markers at the residual synapses in agrin-deficient SCG cultures were also reduced, and these defects were rescued by adding recombinant neural agrin to the cultures. Similarly, we observed a decreased matching of pre- and postsynaptic markers in SCG of agrin-deficient embryos, reflecting a decrease in the number of differentiated synapses in vivo. Finally, in electrophysiological experiments, we found that paired-pulse depression was more pronounced and posttetanic potentiation was significantly greater in agrin-deficient ganglia, indicating that synaptic transmission is also defective. Together, these findings indicate that neural agrin plays an organizing role in the formation and/or differentiation of interneuronal, cholinergic synapses.  相似文献   

17.
Much of what is currently known about the behavior of synapses in vivo has been learned at the mammalian neuromuscular junction, because it is large and accessible and also its postsynaptic acetylcholine receptors (AChRs) are readily labeled with a specific, high-affinity probe, alpha-bungarotoxin (BTX). Neuron-neuron synapses have thus far been much less accessible. We therefore developed techniques for imaging interneuronal synapses in an accessible ganglion in the peripheral nervous system. In the submandibular ganglion, individual preganglionic axons establish large numbers of axo-somatic synapses with postganglionic neurons. To visualize these sites of synaptic contact, presynaptic axons were imaged by using transgenic mice that express fluorescent protein in preganglionic neurons. The postsynaptic sites were visualized by labeling the acetylcholine receptor (AChR) alpha7 subunit with fluorescently tagged BTX. We developed in vivo methods to acquire three-dimensional image stacks of the axons and postsynaptic sites and then follow them over time. The submandibular ganglion is an ideal site to study the formation, elimination, and maintenance of synaptic connections between neurons in vivo.  相似文献   

18.
The effects of activation of the AMPA and NMDA ionotropic glutamate receptors on the extracellular concentration of dopamine, acetylcholine, (ACh) and GABA in striatum of the awake rat was investigated. Also the levels of DOPAC, HVA, and choline (Ch) were included in this study. Seven to eight days after stereotaxical implantation of a guide-cannulae assembly, microdialysis experiments were performed. The dopamine and ACh content of samples were measured by HPLC coupled to electrochemical detection. GABA was measured using fluorometric detection. Perfusion of AMPA (1, 20, 100 mM) produced a dose-related increase of dopamine and a dose-related decrease of DOPAC and HVA. AMPA 100 M decreased extracellular concentrations of ACh and increased the extracellular concentration of Ch and GABA. Perfusion of NMDA 500 M increased the concentration of dopamine and decreased DOPAC and HVA. Also, NMDA 100 M decreased DOPAC. NMDA 500 M decreased the extracellular concentrations of ACh and increased the concentrations of Ch and GABA. Perfusion of the AMPA/kainate-antagonist DNQX (100 M) blocked the effects of AMPA (100 M) on dopamine, DOPAC, HVA, ACh, and GABA concentrations. Perfusion of the NMDA-antagonist CPP (100 M) blocked the effects of NMDA 500 M on dopamine, DOPAC, HVA, ACh, Ch, and GABA concentrations. These results suggest an interaction between glutamate-dopamine-ACh-GABA in striatum of the awake rat.  相似文献   

19.
The extracellular levels of aspartate, glutamate, -aminobutyric acid (GABA), and acetylcholine (ACh) were investigated by microdialysis, coupled with HPLC, in the ventral hippocampus of rats during two 30-min exploration periods. Motor activity was monitored. During exploration I, an increase in motor activity associated with a 315% increase in aspartate, 181% in glutamate, and 264% in ACh levels, occurred during the first 10 min. The increase in GABA level reached a maximum of 257% during the second 10 min. The neurotransmitter levels returned to basal values within 40 min. During exploration II, 1 h later, a smaller increase in neurotransmitter levels and motor activity was observed. In both explorations, the increase in neurotransmitter levels was completely abolished by 1 and 3 M TTX. A statistically significant relationship was found between neurotransmitter extracellular levels and motor activity, for aspartate and glutamate in exploration I, and for ACh in exploration I and II. In conclusion, exploratory activity is associated with or depends on the activation of neuronal systems in the ventral hippocampus releasing aspartate, glutamate, GABA, and ACh. The activation is dampened by habituation.  相似文献   

20.
Our previous microdialysis study of freely moving rats demonstrated that 3 pyrethroids, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) differentially modulate acetylcholine (ACh) release in the hippocampus. To better understand the mechanisms of their modulatory effects and also other effects on the cholinergic system in the brain, the activities of ACh hydrolyzing enzyme acetylcholinesterase (AChE), ACh synthesizing enzyme choline acetyltransferase (ChAT) and ACh synthesizing rate-limiting step, high-affinity choline uptake (HACU) were examined in the present study. The pyrethroids studied had no effect on AChE activity in the cortex, hippocampus and striatum. These pyrethroids had no significant effect on ChAT in the cortex and hippocampus, but striatal ChAT was increased at higher dosage (60 mg/kg) by all three compounds. Lineweaver-Burk analysis of hippocampal HACU revealed that the pyrethroids did not alter the Michaelis-Menten constant (Km) value but caused alteration of maximal velocity (Vmax). Allethrin (60 mg/kg) and cyhalothrin (20 and 60 mg/kg) decreased while deltamethrin (60 mg/kg) increased the Vmax for HACU. In vitro study showed that at higher concentrations (> or = 10(-) (6) M) allethrin and cyhalothrin reduced the hippocampal HACU but deltamethrin increased it. These results suggest that mechanisms of ACh synthesis are involved in the modulatory effects of the pyrethroids on ACh release and other cholinergic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号