首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
An isolation procedure for synaptic plasma membranes from whole chick brain is reported that uses the combined flotation-sedimentation density gradient centrifugation procedure described by Jones and Matus (Jones. D. H. and Matus. A. I. (1974) Biochim. Biophys. Acta 356, 276–287) for rat brain. The particulate of the osmotically shocked and sonicated crude mitochondrial fraction was used for a flotation-sedimentation gradient step. Four fractions were recovered from the gradient after 30 min centrifugation. The fractions were identified and characterized by electron microscopy and by several markers for plasma membrane and other subcellular organcelles. Fraction 2 was recovered from the 28.5–34% (w/v) sucrose interphase and contained the major part of the activities of the neuronal plasma membrane marker enzymes. The specific activities of the (Na++K+)-activated ATPase (EC 3.6.1.3), acetylcholinesterase (EC 3.1.1.7) and 5′-nucleotidase (EC 3.1.3.5) were, respectively, 4.5. 2.0 and 1.2 times higher than in the homogenate. However, Fraction 2 also contained considerable amounts of activities of putative lysosomal and microsomal markers in addition to lower amounts of mitochondrial and myelin markers. Although no prepurification of synaptosomes from the crude mitochondrial fraction was performed, the synaptic plasma membranes obtained showed many properties analogous to similar preparations from rat brain described in recent years.  相似文献   

2.
Summary Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membrane enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

3.
Summary A procedure is described for the preparation of a membrane fraction enriched in basal-lateral plasma membranes from gastric mucosa. Gastric glands isolated from rabbit were employed as starting material, greatly reducing contamination from nonglandular cell types. The distribution of cellular components during the fractionation procedure was monitored with specific marker enzymes. (Na++K+)-ATPase, ouabain-sensitive K+-stimulatedp-nitrophenyl-phosphatase and histamine-stimulated adenylate cyclase were used as markers for basal-lateral membranes. These three markers were similarly distributed during both differential and equilibrium density gradient centrifugation. The enriched membrane fraction contained more than 30% of the total initial activities of the three basal-lateral membrane markers which were purified better than 11-fold with respect to protein. (Na++K+)-ATPase activity was resolved from the activities of acid phosphatase, pepsin, Mg2+-ATPase, cytochromec oxidase, NADPH-cytochromec reductase, glucose-6-phosphatase, (K++H+)-ATPase, DNA and RNA.  相似文献   

4.
Free-flow electrophoresis was used to separate microvilli from the lateral basal plasma membrane of the epithelial cells from rat small intestine. The activities of the marker enzyme for the microvillus membrane, i.e. alkaline phosphatase (EC 3.1.31), was clearly separated from the marker for the lateral-basal plasma membrane, i.e. the (Na+, K+)-ATPase (EC 3.6.1.3). A microvillus membrane fraction was obtained with a high specific activity of alkaline phosphatase (an 8-fold enrichement over the starting homogenate). The lateral-basal plasma membrane fraction contained (Na+, K+)-ATPase (5-fold over homogenate) with some alkaline phosphatase (2-fold over homogenate).Glucose transport was studied in both membrane fractions. The uptake of d-glucose was much faster than that of l-glucose in either plasma membrane, d-Glucose uptake could be accounted for completely by its transport into an osmotically active space. Interestingly, the characteristics of the glucose transport of the microvillus membrane were different from those of the lateral-basal plasma membrane. In particular: Na+ stimulated the d-glucose transport by the microvillus membrane, but not by the lateral-basal plasma membrane. In addition, the glucose transport of the microvillus membrane was much more sensitive to phlorizin inhibition than that of the lateral-basal plasma membrane.These experiments thus provide evidence not only for an asymmetrical distribution of the enzymes, but also for differences in the transport properties with respect to glucose between the two types of plasma membrane of the intestinal epithelial cell.  相似文献   

5.
Plasma membranes were islotaed from rat liver mainly under isotonic conditions. As marker enzymes for the plasma membrane, 5′-nucleotidase and (Na++K+)-ATPase were used. The yield of plasma membrane was 0.6–0.9 mg protein per g wet weight of liver. The recovery of 5′-nucleotidase and (Na++K+)-ATPase activity was 18 and 48% of the total activity of the whole-liver homogenate, respectively. Judged from the acitvity of glucose-6 phosphatase and succinate dehydrogenase in the plasma membrane, and from the electron microscopic observation of it, the contamination by microsomes and mitochondria was very low. A further homogenization of the plasma membrane yielded two fractions, the light and heavy fractions, in a discontinuous sucrose gradient centrifugation. The light fraction showed higher specific activities of 5′-nucleotidase, alkaline phosphatase, (Na++K+)-ATPase and Mg2+-ATPase, whereas the heavy one showed a higher specific activity of adenylate cyclase. Ligation of the bile duct for 48 h decreased the specific activities of (Na++K+)-ATPase and Mg2+-ATPase in the light fraction, whereas it had no significant influence on the activities of these enzymes in the heavy fraction. The specific activity of alkaline phosphatase was elevated in both fractions by the obstruction of the bile flow. Electron microscopy on sections of the plasma membrane subfractions showed that the light fraction consisted of vesicles of various sizes and that the heavy fractions contained membrane sheets and paired membrane strips connected by junctional complexes, as well as vesicles. The origin of these two fractions is discussed and it is suggested that the light fraction was derived from the bile front of the liver cell surface and the heavy one contained the blood front and the lateral surface of it.  相似文献   

6.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

7.
A procedure for cellular fractionation and preparation of plasma membrane from a Burkitt's lymphoma cell line is described. This procedure involves homogenization with a Polytron in buffered isotonic sucrose, and separation of cellular fractions by differential and isopycnic centrifugation in sucrose. The isolated plasma membrane fraction contains 44% of the cellular cholesterol, 50% of the ouabain-sensitive (Na+ + K+)-ATPase activity, 43% of the γ-glutamyltranspeptidase activities and 16% of the phospholipid. This fraction contains only 3% of cellular protein and is contaminated with less than 4% of the total cellular activities of microsomal, lysosomal, mitochondrial, Golgi and soluble marker enzymes. The cholesterol : phospholipid molar ratio of the crude plasma membrane is 0.56. The membranes in this fraction are in the form of vesicles. Further purification of plasma membrane is achieved by sucrose density gradient centrifugation and results in a 25- to 30-fold enrichment of plasma membrane markers. Plasma membrane markers band in these gradients between 1.10 and 1.15 g/cm3.The distribution patterns in the cell fractions of 18 cellular constituents are quantitatively determined. Most constituents are found to distribute in a fashion consistent with the results obtained in other systems. Thymidine-5′-phosphodiesterase (phosphodiesterase I), esterase, nucleoside diphosphatase and glucose-6-phosphatase, however, are shown to be poor markers of membrane fractions in this system.Lactoperoxidase-catalyzed iodination was used to identify several plasma membrane proteins which are exposed at the surface. After separation of labeled polypeptides by sodium dodecyl sulfate gel electrophoresis, the predominant labeled protein was identified as the heavy chain of IgM. Several lesser labeled proteins were observed.  相似文献   

8.
Basolateral plasma membranes of rat small intestinal epithelium were purified by density gradient centrifugation followed by zonal electrophoresis on density gradients. Crude basolateral membranes were obtained by centrifugation in which the marker enzyme, (Na+ + K+)-ATPase, was enriched 10-fold with respect to the initial homogenate. The major contaminant was a membrane fraction derived from smooth endoplasmic reticulum, rich in NADPH-cytochrome c reductase activity. The crude basolateral membrane preparation could be resolved into the two major components by subjecting it to zonal electrophoresis on density gradients. The result was that (Na+ + K+)-ATPase was purified 22-fold with respect to the initial homogenate. Purification with respect to mitochondria and brush border membranes was 35- and 42-fold, respectively. Resolution of (Na+ + K+)-ATPase from NADPH-cytochrome c reductase by electrophoresis was best with membrane material from adult rats between 180 and 250 g. No resolution between the two marker enzymes occurred with material from young rats of 125 to 140 g. These results demonstrate that zonal electrophoresis on density gradients, a simple and inexpensive technique, has a similar potential to free-flow electrophoresis.  相似文献   

9.
Canine trachealis was homogenized and the various membrane fractions isolated by differential centrifugation and discontinuous sucrose gradient centrifugation. A membrane fraction enriched in the plasma membrane marker enzymes 5′-nucleotidase (5-fold) and K+-activated ouabain sensitive p-nitrophenylphosphatase (3-fold) was obtained. The fraction contained very low levels of the inner mitochondrial marker succinate: cytochrome c oxidoreductase. These plasma membrane vesicles showed higher ATP-dependent Ca-uptake (20 μmoles/g protein) than any other submicrosomal fraction. The active Ca-uptake was enhanced by oxalate. The Ca taken up by the plasma membrane vesicles was released instantaneously by dilution in 5mM EGTA and 10μM A23187 and more slowly by dilution only in 5mM EGTA.  相似文献   

10.
Plasma membrane vesicles were obtained by hypotonic lysis in an ice-cold medium containing EDTA and MgCl2. The vesicles were isolated by differential centrifugation. Compared to a total kidney homogenate, a 10–12-fold enrichment of trehalase and alkaline phosphatase (marker enzymes for renal brush border), and a 6-fold enrichment of (Na+---:K+)-stimulated ATPase, (a marker enzyme for the basal and lateral plasma membrane of the tubule cell), was achieved. Contamination by other cell organelles was very low. The plasma membrane vesicles enclosed small amounts of the cytoplasmic enzymes lactate dehydrogenase and malate dehydrogenase, which exhibited full activity only after their release into the medium by sonication.Electron micrographs of this preparation showed microvilli with drumstick-like expansions, but also spherical vesicles. By measuring the distribution of radio-actively labelled compounds of different molecular weight in a packed sediment of the plasma membranes under isotonic conditions, an intravesicular volume of 82% or 9 μl/mg of membrane protein was estimated. The intravesicular volume decreased when the osmolality of the medium was augmented by raffinose. The scattering of light by the vesicular suspension could be used to monitor rapid volume changes. By this method, the following sequence of flux rates was established: glycerol>erythritol> adonitol>mannitol. The fluxes of LiCl, NaCl, and KCl were almost identical, but faster than those of adonitol and mannitol. The data indicate, that a large fraction of the plasma membrane isolated in this preparation have formed vesicles, and also that they have retained, as far as investigated, the permeability characteristics of the plasma membrane.  相似文献   

11.
A membrane fraction with sarcolemmal properties was purified from the smooth muscle layers (myometrium) of rat uterus by successive differential and equilibrium centrifugation in sucrose. The putative sarcolemmal fraction was identified by iodination with [125I]iodosulfanilic acid, had an equilibrium density of 1.15, and was enriched in enzyme activities usually associated with the plasma membrane including 5′-nucleotidase (EC 3.1.3.5) and (Na+ + K+) ATPase (EC 3.6.1.3). These membranes were free of mitochondrial or nuclear membrane contamination, suggesting the relative enrichment of sarcolemmal membranes in the fraction. Proteins of the membranes were heterogeneous with respect to molecular weight, but only a few were labelled when intact muscle was radioiodinated. Uniform resistance of sarcolemmal proteins to trypsin digestion and salt extraction suggested many are tightly bound or intrinsic membrane proteins and was a further indication of the homogeneity of membranes in this fraction.  相似文献   

12.
—A method is described for the fractionation of bulk isolated oligodendroglial cells from calf brain to produce both a plasma membrane and an attached myelin fraction. The cells are homogenized in a sucrose solution containing Mg2+ and K+ at a pH of 6·5. Crude membrane fractions are obtained from this homogenate by discontinuous sucrose density gradient centrifugation. After being subjected to osmotic shock, these fractions are purified by continuous sucrose density gradient centrifugation. The plasma membrane fraction, which bands at 1·0 m -sucrose, was identified by its morphology and enzyme content. Electron microscopy showed it to be a homogeneous preparation of vesicles composed, for the most part, of smooth trilaminar membranes. Enzymatic analysis revealed the presence of high specific activities of Na+, K+-ATPase, 5′-nucleotidase and 2′,3′-cyclic AMPase. Lipid analysis showed a higher galactolipid and lower phospholipid content than has been reported for neuronal and synaptic membranes. The attached myelin fraction, which bands at 0·7 m -sucrose has the typical multilamellar appearance of myelin, but differs considerably from normal myelin in having high concentrations of plasma membrane marker enzymes, and a lipid composition intermediate between normal myelin and the plasma membrane fraction. The ganglioside content and protein patterns of these fractions have also been examined.  相似文献   

13.
Summary Crude membranes from vegetative and aggregation competent cells of Dictyostelium discoideum Ax 2 were separated by a combination of differential and sucrose gradient centrifugation. A fraction mainly containing plasma membranes could be isolated. The high degree of purity was demonstrated by electron microscopy and by the presence of marker enzymes typical for the plasma membrane and the absence of enzymes characteristic for other subcellular compartments. Furthermore surface labelling with radioactive 1-fluoro-2,4-dinitrobenzene-14C and cAMP binding capacity were introduced as plasma membrane markers. In the pure plasma membrane fraction endogenous activities of D-mannosyl-, D-glucosyl- and N-Acetyl-D-glucosaminyl-transferases were present. The activities in plasma membranes of aggregation competent cells were up to thirty times higher than in membranes isolated from vegetative cells.Short Term Fellowship of Deutscher Akademischer Austauschdienst (DAAD).  相似文献   

14.
Ochromonas danica cell homogenate can be fractionated by differential centrifugation into chloroplast, mitochondrial, ribosome, lysosomal, plasma membrane and soluble fractions. The plasma membrane fraction was further purified by discontinuous sucrose density gradient centrifugation and was found to be enriched 4–16-fold in the following enzymes: β-galactosidase, acid phosphatase, alkaline phosphatase, 5′-nucleotidase, and (Na+, K+)-ATPase. The role of plasma membrane phosphatase in the phosphate metabolism of plants is discussed.  相似文献   

15.
Subjecting brain homogenates to differential speed and sucrose density gradient centrifugation resulted in the isolation of a membrane fraction from the post-mitochondrial supernatant with properties and marker enzyme profiles typical of plasma membranes. This membrane fraction is compared with the microsomes and the synaptic plasma membranes isolated from synaptosomes. Like the synaptic plasma membranes, membranes obtained from the post-mitochondrial supernatant were enriched five-fold in 5′-nucleotidase activity. However, the latter membranes were lower in (Na+, K+)-ATPase activity and higher in NADPH-cytochrome C reductase activity as compared to the synaptic plasma membranes. The post-mitochondrial plasma membranes were also different from the microsomes in their respective marker enzyme activities. Electron microscopic examination indicated largely membranous vesicles for both plasma membrane fractions with little contamination by myelin, mitochondra and intact synaptosomes. The phospholipid and acyl group profiles of the two plasma membrane fractions were surprisingly similar, but they were different from the characteristic profiles of myelin and mitochondria. It is concluded that plasma membranes isolated from the post-mitochondrial supernatant fraction are derived largely from neuronal and glial soma and are thus designated the somal plasma membrane fraction.  相似文献   

16.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

17.
Plasma membranes from liver parenchymal cells were isolated by rate-isopycnic zonal centrifugation. A method is described for the Beckman size 15 zonal rotor. It involved preparation from a perfused liver of a parenchymal cell-enriched homogenate in isoosmotic sucrose. The nuclear fraction containing membranes was recovered by centrifugation. The resuspended pellet was applied on the gradient of the zonal rotor. The isolated membranes had the same isopycnic banding density as 37% sucrose (w/w). The specific activity of 5′-nucleotidase, a widely used plasma membrane marker, was 105 μmoles·(mg protein)?1·h?1 being enriched by a factor of 50 as compared with parenchymal cell homogenate. The plasma membrane fraction was free of the mitochondrial and lysosomal enzymes, succinate dehydrogenase and acid phosphatase. No DNA and 10 μg RNA per mg plasma membrane protein were found. The purity of the membranes and their morphological appearance were controlled by electron microscopy. The preparation consisting of large membrane sheets showed a considerable purification away from other cellular components. A comparison with similar methods indicates that plasma membranes of a higher degree of purity can be obtained from parenchymal cells.  相似文献   

18.
The association of K+-stimulated, Mg2+-dependent ATPase activity with plasma membranes from higher plants has been used as a marker for the isolation and purification of a plasma membrane-enriched fraction from cauliflower (Brassica oleraceae L.) buds. Plasma membranes were isolated by differential centrifugation followed by density gradient centrifugation of the microsomal fraction. The degree of purity of plasma membranes was determined by increased sensitivity of Mg2+-ATPase activity to stimulation by K+ and by assay of approximate marker enzymes. In the purified plasma membrane fraction, Mg2+-ATPase activity was stimulated up to 700% by addition of K+. Other monovalent cations also markedly stimulated the enzyme, but only in the presence of the divalent cation Mg2+. Ca2+ was inhibitory to enzyme activity. ATPase was the preferred substrate for hydrolysis, there being little hydrolysis in the presence of ADP, GTP, or p-nitrophenylphosphate. Monovalent cation-stimulated activity was optimum at alkaline pH. Enzyme activity was inhibited nearly 100% by AgNO3 and about 40% by diethylstilbestrol.  相似文献   

19.
Intracellular localization of D-glycerate dehydrogenase (D-glycerate : NAD+ oxidoreductase, EC 1.1.1.29), one of the enzymes of the pathway for gluconeogenesis from serine via hydroxypyruvate, was studied by differential centrifugation. Almost all enzyme activity was found in cytosol. Since the major activities of two other enzymes, serine : pyruvate aminotransferase (EC 2.6.1.51) and glycerate kinase (ATP : D-glycerate 2-phosphotransferase, EC 2.7.1.31), of the pathway via hydroxypyruvate are localized in mitochondrial inner membrane and/or matrix, the possible localization of D-glyceratedehydrogenase in mitochondria was examined. Detailed analysis of mitochondrial fraction prepared by differential centrifugation indicated that rat liver mitochondria do not contain any D-glycerate dehydrogenase activity. Based on these results, a cooperative connection between mitochondria and cytosol in gluconeogenesis from serine via hydroxypyruvate is proposed. Possible mechanisms for transport of intermediates of the pathway via hydroxypyruvate across the mitochondrial membranes are also discussed.  相似文献   

20.
Highly purified plasma membrane fractions have been prepared from GH3 pituitary cells grown in suspension cultures. These membrane fractions have been obtained by differential and sucrose gradient centrifugation and were characterized in terms of their lipid content, marker enzyme analysis and the binding of 3H-labelled thyrotropin-releasing hormone (TRH) to its receptor. Alkaline phosphatase and 5′-nucleotidase activities were enriched 12- to 15-fold in the plasma membrane fraction with somewhat greater enrichment (28-fold) of the specific binding component for [3H]TRH, with a specific activity of 2286 fmol [3H]TRH bound per mg protein. A single class of binding sites for TRH was observed with an apparent dissociation constant of 18 nM, a value similar to that observed for intact cells. No detectable TRH binding to the nuclear fraction was observed that could not be ascribed to residual plasma membrane contamination. By electron microscopy, these fragments appeared to be sealed vesicles with an average diameter of approximately 1800 Å. The binding of 125I-labelled wheat germ agglutinin was used as a marker for plasma membrane purification. In addition to specific binding to this membrane fraction, specific binding was also observed in the nuclear fraction. Studies with fluorescein-labelled wheat germ agglutinin revealed that, in fixed cells, fluorescence was restricted to the plasma membrane. However, if the cells were treated with Triton before labelling, most of the fluorescence was then associated with the cell nucleus. Hence, the use of wheat germ agglutinin binding as a specific plasma membrane marker must be reevaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号