首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Introduced or invading predators may have strong impacts on prey populations of the recipient community mediated by direct and indirect interactions. The long-term progression of predation effects, covering the invasion and establishment phase of alien predators, however, has rarely been documented.
2. This paper documents the impact of an invasive, specialized planktivorous fish on its prey in a subarctic watercourse. Potential predation effects on the crustacean plankton, at the community, population and individual levels, were explored in a long-term study following the invasion by vendace ( Coregonus albula ).
3. Over the 12-year period, the density and species richness of zooplankton decreased, smaller species became more abundant and Daphnia longispina , one of the largest cladocerans, was eliminated from the zooplankton community.
4. Within the dominant cladocerans, including Daphnia spp., Bosmina longispina and Bosmina longirostris , the body size of ovigerous females and the size at first reproduction decreased after the arrival of the new predator. The clutch sizes of Daphnia spp. and B. longirostris also increased.
5. Increased predation pressure following the vendace invasion induced many effects on the crustacean zooplankton, and we document comprehensive and strong direct and indirect long-term impacts of an introduced non-native predator on the native prey community.  相似文献   

2.
The effect of fish predation on Cyclops life cycle   总被引:2,自引:2,他引:0  
Papi  `nska  Katarzyna 《Hydrobiologia》1988,167(1):449-453
Two populations of Cyclops abyssorum tatricus studied in neighbouring alpine lakes in Tatra Mountains (southern Poland) differed in their life cycles. In the lake with planktivorous fishes, Cyclops was typically monocyclic, with highly synchronized reproduction during two winter months, while in the fishless lake its reproduction was asynchronous and continued for six months. Direct and indirect effects of fish predation on Cyclops life cycles are discussed.  相似文献   

3.
SUMMARY 1. We analysed the vulnerability of a number of cladoceran species ( Bosmina longirostris , B. fatalis , Diaphanosoma brachyurum , Ceriodaphnia reticulata , Daphnia ambigua and D. pulex ) to predation by Mesocyclops leuckarti in the laboratory.
2. The prey species represented a wide range of body size, morphology, and swimming behaviour. To compare vulnerability, we measured the efficiency of capture and ingestion of each prey species by Mesocyclops . We also measured the rate at which prey were damaged in attacks by Mesocyclops .
3. Mesocyclops preyed effectively on Diaphanosoma and small juvenile Ceriodaphnia but not on Bosmina or Daphnia . Observations suggested that various defence mechanisms, including protruding structures and swimming behaviour and speed, are important in determining prey vulnerability.
4. The body size of Daphnia and Ceriodaphnia seems to be important, because larger animals were better able to escape Mesocyclops attacks. Attacks by Mesocyclops often caused fatal damage, however, even to large Daphnia .  相似文献   

4.
Z. Maciej Gliwicz 《Hydrobiologia》1994,272(1-3):201-210
One of the most obvious features of tropical lakes and reservoirs is the small body size of their zooplankton taxa. It is believed that this is the result of high and persistent predation by abundant planktivorous fish, which select large-bodied zooplankton prey thus making them more vulnerable to extinction in tropical as compared to temperate habitats. Do these extinctions result directly from fish predation? Could the high predation-induced mortality alone be responsible for an extermination of the population from a habitat? Or could indirect effects of predation be responsible? Some important indirect effects can be seen at the demographic level; these include reduced reproduction in the population resulting from higher vulnerability of ovigerous females to predation by visually oriented planktivores. Other important indirect effects can be observed at the individual level; these include shifts in behavior (from foraging to predator avoidance) and adjustments in physiology (from high to low feeding rate) in those planktonic animals which detect danger from their predators by sensing either the ‘predator odor’ or an ‘alarm substance’ originating from injured conspecific prey. Although a zooplankton species density may mostly result from the brutal force of direct predator impact on the population (mortality), it is more likely that its distribution in time and space could be attributed to a combination of indirect effects of predation on individual behavior and physiology. An example of periodicity in density and depth distribution patterns of Cahora Bassa zooplankton species and their periodic exterminations seems to confirm the role of indirect effects of predation by planktivorous fish.  相似文献   

5.
The 1992 survey of zooplankton structure in fourteen London supply reservoirs showed the overall dominance of large-bodied zooplankton, mainly species of Daphnia. These reservoirs can be considered as ‘anti-fish’ by virtue of their steeply sloping concrete or brick sides. The average biomass of large Daphnia spp (retained on a 710 μm sieve) in the total zooplankton biomass was higher than 20% for twelve out of fourteen reservoirs. The cladoceran-copepod ratio was inversely correlated with both dominance of large-bodied Daphnia magna and cladoceran body-size structure. Parallelly, there were tendency of more efficient utilization of lowered algal crops in reservoirs dominated by large-bodied Daphnia spp. A graphical model is presented which relates daphnid species composition and zooplankton size structure to a presumed gradient of fish biomass in these reservoirs.  相似文献   

6.
1. Visually foraging fish typically exclude large zooplankton from clear‐water lakes and reservoirs. Do fish have the same effect in turbid waters, or does turbidity provide a refuge from visual predation? 2. To test the hypothesis that fish exclude large zooplankton species from turbid sites, I searched for populations of medium or large Daphnia species in turbid, fish‐containing reservoirs of south‐central Oklahoma and north‐central Texas, U.S.A., and surveyed the literature for accounts of Daphnia species in turbid habitats worldwide. 3. Only small Daphnia species and the exuberantly spined Daphnia lumholtzi were detected in the turbid reservoirs. The Daphnia species in the reservoirs are smaller than other Daphnia species that occur in the area but were not detected. An extensive survey of the literature suggests that large Daphnia may be found in the lakes of extreme turbidity [Secchi disk depth (SD) < 0.2 m] but that only small and spiny Daphnia are likely to occur in more typical turbid locations (1.0 m > SD > 0.2 m) unless some additional factor reduces the influence of fish predation in such sites. 4. The field samples from Texas and Oklahoma together with the literature review suggest that the effect of visually foraging planktivorous fish on the size structure of turbid‐water zooplankton communities may often be as strong or even stronger than the effect of fish on clear‐water zooplankton communities.  相似文献   

7.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

8.
Synopsis Variability in the mean number of gill rakers was examined in 17 tropical (Panama) and 16 temperate (Canada) freshwater fishes. Ranges for an additional 16 temperate species were obtained from the literature. Variance in gill raker number within species was significantly greater in the tropical species. The tropical species also showed significantly greater dispersion of the species means when among-species variation was compared to an overall mean for each latitude. The reduced among-species variation observed in the temperate species appears to result from a scarcity of high raker means in small, stream species of Canada. This study offers no evidence for the existence of greater feeding specialization among small, primarily stream fishes in the neotropics. The data suggest that the food resource spectrum utilized by these species may be shorter at the higher latitudes examined.  相似文献   

9.
1. Eutrophic acid lakes are not common. Delamere Lake in Cheshire, U.K. is shallow and acid (mean pH 4.5) with a very high phytoplankton crop (mean 290 μg chlorophyll a L?1), dominated by Dictyosphaerium pulchellum. Rotifers were dominant in the pelagic waters but small cladocerans (Alona guttata, Chydorus sphaericus and Scapholeberis mucronata) were occasional in the littoral waters. Chaoborus flavicans larvae were the top predators in this fishless lake. Two mesocosm experiments were carried out in which pH and Chaoborus populations were manipulated. 2. Progressively higher concentrations of D. pulchellum were maintained in the elevated pH treatments (pH 6 and 8; P < 0.001) with increased amounts of a Chlamydomonas species at the end of the experiment. Highest species richness was seen at ambient pH. Thus the low pH of Delamere Lake alone did not control the structure of the phytoplankton community. Keratella quadrata showed significantly higher abundance at pH 6 than in other pH treatments (P < 0.001). Species richness of rotifers was unaffected by pH. 3. Most Cladocera were C. sphaericus. Although never seen in the open lake, Daphnia pulex appeared in all the pH treatments. Low pH did not control small Cladocera abundance in Delamere Lake, but probably hampered reproduction in Daphnia. Negative correlations between chlorophyll a concentrations and Daphnia in the mesocosms (r2 = 0.215, P < 0.05), however, indicated the potential of large‐bodied daphniids in controlling phytoplankton. 4. Neither different combinations of Chaoborus instars (none, instars 1 and 2 and instars 3–5) nor different densities of instars 3–5 (0.15, 0.5 and 1.0 L?1) had a negative impact on Cladocera. Daphnia pulex remained unaffected in the experiment, perhaps because of its large size, and C. sphaericus because of its high reproductive rate compensating predatory losses. 5. Very low pH in Delamere Lake might suppress Daphnia by hampering its reproduction. Consequently, Daphnia may be vulnerable to invertebrate predation even at low predator density in the lake.  相似文献   

10.
The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed‐basin lakes within semiarid regions. To address this shortfall, we quantified decade‐scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI 相似文献   

11.
Bag-type enclosures (75 m3) with bottom sheets and tube-type enclosures (105 m3) open to the bottom sediment were stocked with exotic whitefish (Coregonus lavaretus maraena) to study their predation effects on the plankton community. The fish fed mainly on adult chironomids during the period of their emergence (earlier part of the experimental period). Thereafter, the food preference was shifted to larvae of chironomids and crustacean zooplankters. The predation effects on the plankton community were not evident in the bag-type enclosures where zooplankton densities were consistently low. The fish reduced the crustacean populations composed ofBosmina fatalis, B. longirostris andCyclops vicinus in the tube-type enclosures where the prey density was high (above ca. 50 individuals 1−1). The results suggested that the intensity of predation depended on the prey density. Rotifers increased in the fish enclosure, probably becauseCoregonus reduced the predation pressure byCyclops vicinus on rotifers and allowed the latter to increase. In the fish enclosures, no marked changes in species composition were observed. Zooplankton predated by the fish seemed to be distributed near the walls of the enclosures. Problems of enclosure experiments for examining the effects of fish predation on pelagic zooplankton communities are discussed.  相似文献   

12.
The population behavior of Daphnia gessneri Herbst, 1967 in a floodplain lake (Lago Grande) of the lower Rio Solimões was investigated between April 1979 and March 1980 with regard to 1) predation by the fish called tambaqui (Colossoma macropomum, Characidae), 2) water level fluctuation and 3) water transparency. Zooplankton density samples were collected at two sites near mid-lake, where water depth and Secchi disc transparency were measured. In addition, qualitative samples of zooplankton and fish collections were taken at several sites in the adjacent floodplain areas. The author concludes that fluctuations in Daphnia gessneri populations correlate most with intense predation by fish and water turbidity.  相似文献   

13.
1. In some shallow lakes, Daphnia and other important pelagic consumers of phytoplankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however. 2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates. 3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown. 4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes. 5. Because our understanding of DHM is rudimentary, we highlight potentially important research areas: studying a variety of systems, comparing temporal and spatial scales of DHM in relation to DVM, quantifying positive and negative influences of macrophytes, focusing on the role of invertebrate predation, testing the performance of cladocerans on littoral versus pelagic foods (quantity and quality), investigating the potential influence of temperature, and constructing comprehensive models that can predict the likelihood of DHM. Our ability to biomanipulate shallow lakes to create or maintain the desired clear water state will increase as we learn more about the factors initiating and influencing DHM.  相似文献   

14.
15.
1. We examined small, fishless headwater streams to determine whether transport of macroinvertebrates into the littoral zone of an oligotrophic lake augmented food availability for Cottus asper, an abundant predatory fish in our study system. We sampled fish and macroinvertebrates during the recruitment and growth season of 2 years, either monthly (2004) or bi‐monthly (2005), to observe whether stream inputs increased prey availability and whether variation in total macroinvertebrate biomass was tracked by fish. 2. Observations from eight headwater streams indicated that streams did not increase the total macroinvertebrate biomass in the shallow littoral zone at stream inflows, relative to adjacent plots without stream inputs (controls). The taxonomic composition of stream macroinvertebrates drifting toward the lake differed from that in the littoral lake benthos itself, although there was no evidence of any species change in the composition of the littoral benthos brought about by stream inputs. 3. Although streams made no measurable contribution to the biomass or taxonomic composition of the littoral macroinvertebrate benthos, there was substantial temporal variation in biomass among the eight sites for each of the (n = 7) sample periods during which observations were made. Variation in total biomass was primarily a function of bottom slope and benthic substrata in the lake habitats. Dominant taxonomic groups were Baetidae, Ephemerellidae (two genera), Leptophlebiidae, Chironomidae (three subfamilies) and Perlodidae, although we did not determine the specific substratum affinities of each taxon. 4. Mixed effects linear models identified a significant interaction between macroinvertebrate biomass and plot type (stream inflow vs. control) associated with fish abundance. Across the observed range of macroinvertebrate biomass, fish showed a significant preference for stream inflows, but more closely tracked food availability in the controls. For young‐of‐the‐year (YOY), a negative effect of temperature was also included in the model, and we observed lower temperatures at stream inflows. However, abundance of predatory adults affected habitat selection for YOY. Lake‐bottom slope also accounted for variation in abundance in both fish models. 5. Our results suggest that the effect of fishless headwater streams on downstream fish may not always be through direct delivery of food. In this study system, fish preferred stream inflow plots, but this preference interacted with macroinvertebrate biomass in a manner that was difficult to explain. For YOY, predation risk was related to the preference for stream inflows, although the specific factor that mitigates predation risk remains poorly understood.  相似文献   

16.
滤食杂食性鱼类放养对浮游动物群落结构的影响   总被引:2,自引:0,他引:2  
陈炳辉  刘正文 《生态科学》2012,31(2):161-166
滤食杂食性鱼类是我国南方水体中常见鱼类,本文调查了放养滤食杂食性鱼类后浮游动物的丰度和种类组成的变化,以探讨其对浮游动物群落的影响.结果显示,滤食杂食性鱼类放养之后,枝角类模糊秀体溞(Diaphanosoma dubium)、微型裸腹溞(Moina micrura)和桡足类蒙古温剑水蚤(Thermocyclops mongolicus)、南方近镖水蚤(Tropodiaptomus australis)等丰度迅速下降,而轮虫丰度在鱼类放养一周后迅速增加,且保持较高的密度;轮虫优势种也发生了变化,调查前两周主要以臂尾轮虫(Brachionus)为主,两周后以暗小异尾轮虫(Trichocereidae pusilla)、广布多肢轮虫(Polyarthra trigla)和裂痕龟纹轮虫(Anuraeopsisfissa)等个体更小的种类为主.本研究说明,滤食杂食性鱼类能够显著影响浮游动物群落结构,个体较大的种类受到的影响较大,最后导致浮游动物群落的小型化.  相似文献   

17.
1. Wind‐induced sediment resuspension in shallow lakes affects many physical and biological processes, including food gathering by zooplankton. The effects of suspended sediment on clearance rate were determined for a dominant cladoceran, Daphnia carinata, and calanoid copepod, Boeckella hamata, in Lake Waihola, New Zealand. 2. Animals were incubated at multiple densities for 4 days in lake water containing different amounts of suspended lake sediment. Rates of harvest of major food organisms were determined for each sediment level (turbidity) from changes in net growth rate with grazer density. 3. Daphnia cleared all food organisms 7–40 μm in length at similar rates, but was less efficient in its removal of free bacteria, phytoplankton <7 μm, and large cyanobacterial filaments. Elevation of sediment turbidity from 2 to 10 nephelometric turbidity units (NTU) (63 mg DW L?1 added sediment) reduced Daphnia clearance of phytoplankton, heterotrophic flagellates and ciliates by 72–100%, and of amoebae and attached bacteria by 21–44%. Further inhibition occurred at higher turbidity. 4. Boeckella hamata removed microzooplankton primarily, rather than phytoplankton. The rate at which it cleared rotifers was reduced by 56% when turbidity was increased from 2.5 to 100 NTU. 5. In the absence of macrozooplankton, algal growth increased with sediment turbidity, suggesting that sediment also inhibits rotifer grazing. 6. As mid‐day turbidity in Lake Waihola is ≥10 NTU about 40% of the time, sediment resuspension may play a major role in moderating energy flow and structuring pelagic communities in this lake.  相似文献   

18.
A wooden framed enclosure screened by plastic sheeting is described. This was sited along the bank to alleviate circulation problems and to allow for easy construction, surveillance and maintenance and sampling. An aeration system was incorporated. The suitability of the enclosure for use in field experiments on fish and zooplankton was tested by using 10 enclosures to investigate the effect of fish on the density of zooplankton. Fish survival varied from 15.5 to 47% and was similar to that for the pond. Statistically significant inferences were obtained using a one way ANOVA which showed that fish predation did have an effect on the density of some species of zooplankton. Cluster analysis was used to illustrate the closeness of relationship of the zooplankton communities in the enclosures with and without fish. Problems associated with the use of enclosures in experimental studies are discussed.  相似文献   

19.
Experiments were performed in 1977 to determine which large zooplankton in a series of high altitude ponds can be consumed by the predatory flatworm Mesostoma ehrenbergii. This predator consumes Daphnia at a high rate and the fairy shrimp Branchinecta at a low rate, but does not consume Diaptomus. Experiments were performed in 1978 and 1979 to determined the rate of predation on Daphnia in 30 liter tubs and to determine if predation rate is correlated with surface to volume ratio of experimental containers. There is a clear correlation between surface to volume ratio and predation rate. Determinations of Mesostoma and Daphnia densities were made in a series of eight high altitude ponds, and pond surface to volume ratios were determined. Examination of these parameters lends credence to the argument that Mesostoma predation affects Daphnia dynamics in some circumstances. The results suggest that benthic invertebrate predators may affect zooplankton dynamics, especially in shallow ponds.  相似文献   

20.
  • 1 Planktivorous fish were hypothesised to influence the abundance of algal biomass in lakes by changing zooplankton grazing, affecting zooplankton nutrient recycling and by direct recycling of nutrients to phytoplankton. The relative roles of direct fish effects vs. zooplankton grazing were tested in mesocosm experiments by adding to natural communities large grazing zooplankton (Daphnia carinata) and small planktivorous fish (mosquitofish or juveniles of Australian golden perch).
  • 2 The addition of Daphnia to natural communities reduced the numbers of all phytoplankton less than 30 µm in size, but did not affect total biomass of phytoplankton as large Volvox colonies predominated.
  • 3 The addition of Daphnia also reduced the abundance of some small (Moina, Bosmina, Keratella) and large (adult Boeckella) zooplankton, suggesting competitive interactions within zooplankton.
  • 4 The addition of mosquitofish to communities containing Daphnia further reduced the abundance of some small zooplankton (Moina, Keratella), but increased the numbers of Daphnia and adult Boeckella. In spite of the likely increase in grazing due to Daphnia, the abundance of total phytoplankton and dominant alga Volvox did not decline in the presence of mosquitofish but was maintained at a significantly higher level than in control.
  • 5 The addition of juveniles of golden perch to communities containing Daphnia reduced the abundance of small zooplankton (Moina), increased the abundance of large zooplankton (adult Boeckella) but had no significant effect on Daphnia and total phytoplankton abundance.
  • 6 The results of the present study suggest that some planktivorous fish can promote the growth of phytoplankton in a direct way, probably by recycling nutrients, and even in the presence of large grazers. However, the manifestation of the direct effect of fish can vary with fish species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号