首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
帕金森病丘脑底核神经元的电活动特点   总被引:4,自引:0,他引:4  
Zhuang P  Li YJ 《生理学报》2003,55(4):435-441
本研究探讨了帕金森病(Parkinson′s disease, PD)患者丘脑底核(subthalamic nucleus, STN)神经元电活动的特点及其与PD症状的关系. 35例PD患者在接受手术治疗的同时, 应用微电极细胞记录和EMG记录技术, 记录手术靶点STN及其周围结构神经元的电活动以及手术对侧肢体的EMG. 应用分析软件甄别单细胞电活动, 分析其特点及其与肢体EMG的关系. 结果表明, STN及其周围结构具有特征性放电活动.在36个记录针道中, 共发现436个STN神经元, 平均放电频率44.0±20.5 Hz. 其中, 56%的神经元呈不规则簇状放电; 15%呈紧张性放电; 29%呈规则的簇状放电, 其放电节律与肢体震颤的EMG高度一致(r2=0.66, P<0.01), 称之为震颤细胞. 在PD震颤型患者的STN中发现大量震颤细胞, 且80%位于STN中上部, 而在PD僵直型患者的STN中均发现与运动相关的细胞电活动. 本研究提示, 通过微电极记录技术可准确地判断STN的位置和范围; 与震颤活动相关的细胞放电和与运动相关细胞的放电与PD症状有内在关系; STN参与PD运动障碍的病理生理过程.  相似文献   

2.
Background firing activity was examined in 240 neurons belonging to the thalamic nucleus reticularis (Rt) in the unanesthetized human brain by extracellular microelectrode recording techniques during stereotaxic surgery for dyskinesia. The cellular organization of Rt was shown to be nonuniform, and distinguished by the presence of three types of neuron: one with arrhythmic single discharge (A-type, 40%), another with rhythmic (2–5 Hz) generation of short high-frequency (of up to 500/sec) burster discharges (B-type, 49%) and a third with aperiodic protracted high-frequency (of up to 500/sec) bursting discharges separated by "silent" intervals of a constant duration of 80–150 msec (i.e., C-type, 11%). Differences between the background activity pattern of these cell types during loss of consciousness under anesthesia are described. Tonic regulation of neuronal type was not pronounced but a tendency was noticed in the cells towards a consistent rise in firing rate, rhythmic frequency and variability, etc. in both A and B units, especially in the latter. Findings pointing to the absence of a direct relationship between rhythmic activity in the Rt and parkinsonian tremor were confirmed. Background activity in B-type cells was found to increase and then stabilize with a rise in the degree of tremor. The nature of regular bursting activity patterns in B and C neurons is discussed in the light of our findings.Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Institute of Neurosurgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 456–466, July–August, 1987.  相似文献   

3.
This paper reviews two new facets of the behaviour of human motoneurones; these were demonstrated by modelling combined with analysis of long periods of low-frequency tonic motor unit firing (sub-primary range). 1) A novel transformation of the interval histogram has shown that the effective part of the membrane's post-spike voltage trajectory is a segment of an exponential (rather than linear), with most spikes being triggered by synaptic noise before the mean potential reaches threshold. The curvature of the motoneurone's trajectory affects virtually all measures of its behaviour and response to stimulation. The 'trajectory' is measured from threshold, and so includes any changes in threshold during the interspike interval. 2) A novel rhythmic stimulus (amplitude-modulated pulsed vibration) has been used to show that the motoneurone produces appreciable phase-advance during sinusoidal excitation. At low frequencies, the advance increases with rising stimulus frequency but then, slightly below the motoneurones mean firing rate, it suddenly becomes smaller. The gain has a maximum for stimuli at the mean firing rate (the 'carrier'). Such behaviour is functionally important since it affects the motoneurone's response to any rhythmic input, whether generated peripherally by the receptors (as in tremor) or by the CNS (as with cortical oscillations). Low mean firing rates favour tremor, since the high gain and reduced phase advance at the 'carrier' reduce the stability of the stretch reflex.  相似文献   

4.
The exact origin of tremor in Parkinson's disease remains unknown. We explain why the existing data converge on the basal ganglia-thalamo-cortical loop as a tremor generator and consider a conductance-based model of subthalamo-pallidal circuits embedded into a simplified representation of the basal ganglia-thalamo-cortical circuit to investigate the dynamics of this loop. We show how variation of the strength of dopamine-modulated connections in the basal ganglia-thalamo-cortical loop (representing the decreasing dopamine level in Parkinson's disease) leads to the occurrence of tremor-like burst firing. These tremor-like oscillations are suppressed when the connections are modulated back to represent a higher dopamine level (as it would be the case in dopaminergic therapy), as well as when the basal ganglia-thalamo-cortical loop is broken (as would be the case for ablative anti-parkinsonian surgeries). Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. The strengthening of the loop leads to tremor oscillations, while the weakening or disconnection of the loop suppresses them. The loop origin of parkinsonian tremor also suggests that new tremor-suppression therapies may have anatomical targets in different cortical and subcortical areas as long as they are within the basal ganglia-thalamo-cortical loop.  相似文献   

5.
Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ∼20 Hz descending input could be altered by non-linear interactions with ∼10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist) and salbutamol (β2-agonist), which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg) significantly increased beta band (15.3–32.2 Hz) corticomuscular coherence compared with placebo, but reduced tremor in the 6.2–11.9 Hz range. Salbutamol (2.5 mg) was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.  相似文献   

6.
In detailed simulations we present a coordinated delayed feedback stimulation as a particularly robust and mild technique for desynchronization. We feed back the measured and band-pass filtered local filed potential via several or multiple sites with different delays, respectively. This yields a resounding desynchronization in a naturally demand-controlled way. Our novel approach is superior to previously developed techniques: It is robust against variations of system parameters, e.g., the mean firing rate. It does not require time-consuming calibration. It also prevents intermittent resynchronization typically caused by all methods employing repetitive administration of shocks. We suggest our novel technique to be used for deep brain stimulation in patients suffering from neurological diseases with pathological synchronization, such as Parkinsonian tremor, essential tremor or epilepsy.  相似文献   

7.
Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance. Eight subjects with enhanced physiological tremor performed a visuomotor task requiring the right index finger to compensate a static force generated by a manipulandum to which Gaussian noise (3–35 Hz) was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a larger green circle. Electromyogram (EMG) from the active hand muscles and finger position were recorded. Performance was measured by the mean absolute deviation of the white dot from the zero position. Tremor was identified by the acceleration in the frequency range 7–12 Hz. Two different conditions were compared: with and without superimposed noise at optimal amplitude (determined at the beginning of the experiment). The application of optimum noise reduced tremor (accelerometric amplitude and EMG activity) and improved the motor performance (reduced mean absolute deviation from zero). These data provide the first evidence of a significant reduction of enhanced physiological tremor in the human sensorimotor system due to application of external stochastic noise.  相似文献   

8.
Bursting activity in cells cross-correlated with electromyographic (EMG) activity during parkinsonian tremor. Statistically significant evidence of cross-correlation was found for 49% of cells located at the lesion target for relief of tremor. Statistically significant correlation was found for 90% of cells having tremor frequency power greater than twice 'average power' at nontremor frequencies. This population of cells may be involved in the generation of parkinsonian tremor.  相似文献   

9.
GABAergic signaling is central to the function of the thalamus and has been traditionally attributed primarily to the nucleus reticularis thalami (nRT). Here we present a GABAergic pathway, distinct from the nRT, that exerts a powerful inhibitory effect selectively in higher-order thalamic relays of the rat. Axons originating in the anterior pretectal nucleus (APT) innervated the proximal dendrites of relay cells via large GABAergic terminals with multiple release sites. Stimulation of the APT in an in vitro slice preparation revealed a GABA(A) receptor-mediated, monosynaptic IPSC in relay cells. Activation of presumed single APT fibers induced rebound burst firing in relay cells. Different APT neurons recorded in vivo displayed fast bursting, tonic, or rhythmic firing. Our data suggest that selective extrareticular GABAergic control of relay cell activity will result in effective, state-dependent gating of thalamocortical information transfer in higher-order but not in first-order relays.  相似文献   

10.
Occlusion of the anterior choroidal artery was carried out in four cases for relief of Parkinsonism. Results were disappointing but there was temporary cessation of tremor in three cases and sustained alleviation of rigidity in two cases. The causes of these changes following operation are unknown.  相似文献   

11.
We investigated directionalities of eardrum vibration and auditory nerve response in anesthetized northern leopard frogs (Rana pipiens pipiens). Simultaneous measures of eardrum velocities and firing rates from 282 auditory nerve fibers were obtained in response to free-field sounds from eight directions in the horizontal plane. Sound pressure at the external surface of the ipsilateral eardrum was kept constant for each presentation direction (± 0.5 dB). Significant effects of sound direction on eardrum velocity were shown in 90% of the cases. Maximum or minimum eardrum velocity was observed more often when sounds were presented from the lateral and posterior fields, or from the anterior and contralateral fields, respectively. Firing rates of 38% of the fibers were significantly affected by sound direction and maximum or minimum firing rate was observed more frequently when sounds were delivered from the lateral fields, or from the anterior and contralateral fields, respectively. Directionality patterns of eardrum velocity and nerve firing also vary with sound frequency. Statistically significant correlation between eardrum velocity and nerve fiber firing rate was demonstrated in only 45% of the fibers, suggesting that sound transmission to the inner ear through extratympanic pathways plays a non-trivial role in the genesis of directionality of auditory nerve responses.Abbreviations CF characteristic frequency - SVL snout-vent length - TM tympanic membrane  相似文献   

12.
Bonnefont X  Mollard P 《FEBS letters》2003,548(1-3):49-52
The anterior pituitary is an endocrine gland that controls basic body functions. Pituitary cell functioning depends on membrane excitability, which induces cytosolic calcium rises. Here, we reported the first identification of small-amplitude voltage fluctuations that controlled spike firing in endocrine cells recorded in situ. Three patterns of voltage fluctuations were distinguishable by their durations (1-100 s). These patterns could be ordered on top of each other, namely in response to secretagogues. Thus, pituitary endocrine cells express in situ a cell code in which small-amplitude voltage fluctuations lead to a multimodal arrangement of spike firing, which may finely tune calcium-dependent functions.  相似文献   

13.
Motoneurons demonstrate a type of self-sustained firing behavior that seems to be produced by a prolonged period of depolarization caused by intrinsic long-term changes in the motoneuron. Such self-sustained firing behavior has previously been reported in human motor units. The purpose of the present study was to investigate the occurrence of self-sustained firing behavior in older adults. Eight young (mean age 24 yrs) and eight older (mean age 73 yrs) individuals participated in the investigation. While subjects produced light dorsiflexion contractions, a brief vibration stimulus was applied to the tibialis anterior muscle. Motor unit recordings were also obtained from the tibialis anterior muscle. Self-sustained firing behavior was evidenced by the appearance of new motor unit recruitment following vibration, even as the motor units that fired before the vibratory stimulus maintained a steady firing rate. The proportion of motor units exhibiting self-sustained firing activity was similar in both young and older adults (approx. 23% of trials). We conclude that self-sustained firing behavior is a ubiquitous phenomenon that does not seem to be affected by the aging process.  相似文献   

14.
In excitable cells, voltage-gated calcium influx provides an effective mechanism for the activation of exocytosis. In this study, we demonstrate that although rat anterior pituitary lactotrophs, somatotrophs, and gonadotrophs exhibited spontaneous and extracellular calcium-dependent electrical activity, voltage-gated calcium influx triggered secretion only in lactotrophs and somatotrophs. The lack of action potential-driven secretion in gonadotrophs was not due to the proportion of spontaneously firing cells or spike frequency. Gonadotrophs exhibited calcium signals during prolonged depolarization comparable with signals observed in somatotrophs and lactotrophs. The secretory vesicles in all three cell types also had a similar sensitivity to voltage-gated calcium influx. However, the pattern of action potential calcium influx differed among three cell types. Spontaneous activity in gonadotrophs was characterized by high amplitude, sharp spikes that had a limited capacity to promote calcium influx, whereas lactotrophs and somatotrophs fired plateau-bursting action potentials that generated high amplitude calcium signals. Furthermore, a shift in the pattern of firing from sharp spikes to plateau-like spikes in gonadotrophs triggered luteinizing hormone secretion. These results indicate that the cell type-specific action potential secretion coupling in pituitary cells is determined by the capacity of their plasma membrane oscillator to generate threshold calcium signals.  相似文献   

15.
Essential tremor (ET) is one of the most common movement disorders in human adults. It can be characterized as a progressive neurological disorder of which the most recognizable feature is a tremor of the arms or hands that is apparent during voluntary movements such as eating and writing. The pathology of ET remains unclear. Resting-state fMRI (RS-fMRI), as a non-invasive imaging technique, was employed to investigate abnormalities of functional connectivity in ET in the brain. Regional homogeneity (ReHo) was used as a metric of RS-fMRI to assess the local functional connectivity abnormality in ET with 20 ET patients and 20 age- and gender-matched healthy controls (HC). The ET group showed decreased ReHo in the anterior and posterior bilateral cerebellar lobes, the bilateral thalamus and the insular lobe, and increased ReHo in the bilateral prefrontal and parietal cortices, the left primary motor cortex and left supplementary motor area. The abnormal ReHo value of ET patients in the bilateral anterior cerebellar lobes and the right posterior cerebellar lobe were negatively correlated with the tremor severity score, while positively correlated with that in the left primary motor cortex. These findings suggest that the abnormality in cerebello-thalamo-cortical motor pathway is involved in tremor generation and propagation, which may be related to motor-related symptoms in ET patients. Meanwhile, the abnormality in the prefrontal and parietal regions may be associated with non-motor symptoms in ET. These findings suggest that the ReHo could be utilized for investigations of functional-pathological mechanism of ET.  相似文献   

16.
大鼠海马癫痫电网络重建中爆发式放电神经元的活动   总被引:3,自引:1,他引:3  
Wang WT  Qin XK  Yin SJ  Han D 《生理学报》2003,55(6):663-671
本文探讨双侧海马(hippoeampus,HPC)神经网络中爆发式放电神经元(bursting-firing neurons,BFN)的活动规律及其与海马癫痫网络重建的关系。实验用雄性SD大鼠140只(150-250 g),急性强直电刺激(60 Hz,2 s,0.4-0.6 mA)右后背HPC CAl区(acute tetanization of the posterior dorsal hippocampus,ATPDH),同步记录同侧或对侧前背HPC单位放电和深部电图;强直电刺激右前背HPC(acute tetanization of the anterior dorsal hippocampus,AT-ADH),同步记录双侧前背HPC单位放电。实验共记录了13.8%(19/138)双侧前背HPC的BFN,其中13个为刺激诱发性BFN,6个为自发性BFN。强直电刺激引起的诱发反应包括:(1)ATPDH明显调制同侧前背HPC的BFN,产生规则的节律性爆发式放电,刺激后串内动作电位间期(bursting interspike interval,BISI)减小(P<0.001);(2)AT-PDH引起对侧前背HPC的BFN出现抑制后轻度调制效应,刺激后动作电位间期(interspike interval,ISI)增大(P<0.001);(3)ATADH后易化对侧前背HPC的自发性BFN节律,增加ISI(P<0.001)和IBI(P=0.01);(4)ATPDH诱导双侧前背HPC的BFN产生规则的节律性爆发式放电,伴有同步或非同步性网络癫痫的形成。上述实验结果提示,ATPDH沿同侧HPC长轴,跨大脑半球诱发前背HPC单个BFN的形成,其节律性爆  相似文献   

17.
A population stochastic model based on the differing properties and the independent activation of motor units is used to describe the production of force in the contracting skeletal muscle. Detailed force predictions of the model concerning a hand muscle are obtained by computer simulation. General features of the force signal are established analyticaly on the basis of the general properties of the neuromuscular system which the population model takes into account. The results show that the asynchronous activity of motor units and the distribution of their filtering and firing properties at various levels of muscle contraction are esponsible, at least partially, for the main features of the muscle force waveform, including tremor.  相似文献   

18.
Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve.  相似文献   

19.
The synchronized firings of active motor units (MUs) increase the oscillations of muscle force, observed as physiological tremor. This study aimed to investigate the effects of synchronizing the firings within three types of MUs (slow—S, fast resistant to fatigue–FR, and fast fatigable–FF) on the muscle force production using a mathematical model of the rat medial gastrocnemius muscle. The model was designed based on the actual proportion and physiological properties of MUs and motoneurons innervating the muscle. The isometric muscle and MU forces were simulated by a model predicting non-synchronized firing of a pool of 57 MUs (including 8 S, 23 FR, and 26 FF) to ascertain a maximum excitatory signal when all MUs were recruited into the contraction. The mean firing frequency of each MU depended upon the twitch contraction time, whereas the recruitment order was determined according to increasing forces (the size principle). The synchronization of firings of individual MUs was simulated using four different modes and inducing the synchronization of firings within three time windows (± 2, ± 4, and ± 6 ms) for four different combinations of MUs. The synchronization was estimated using two parameters, the correlation coefficient and the cross-interval synchronization index. The four scenarios of synchronization increased the values of the root-mean-square, range, and maximum force in correlation with the increase of the time window. Greater synchronization index values resulted in higher root-mean-square, range, and maximum of force outcomes for all MU types as well as for the whole muscle output; however, the mean spectral frequency of the forces decreased, whereas the mean force remained nearly unchanged. The range of variability and the root-mean-square of forces were higher for fast MUs than for slow MUs; meanwhile, the relative values of these parameters were highest for slow MUs, indicating their important contribution to muscle tremor, especially during weak contractions.  相似文献   

20.
Interpretation of the Repetitive Firing of Nerve Cells   总被引:4,自引:2,他引:4       下载免费PDF全文
Eccentric cells of Limulus respond with repetitive firing to sustained depolarizing currents. Following stimulation with a step of current, latency is shorter than first interval and later intervals increase progressively. A shock of intensity twice threshold can evoke firing 25 msec. after an impulse. But in the same cell, a current step twice rheobase evokes a second impulse more than 50 msec. after the first, and current intensity must be raised to over five times rheobase to obtain a first interval of about 25 msec. Repetitive firing was evoked by means of trains of shocks. With stimuli of moderate intensity, firing was evoked by only some of the shocks and intervals between successive impulses increased with time. This is ascribed to accumulation of refractoriness with successive impulses. Higher frequencies of firing are obtained with shocks of intensity n x threshold than with constant currents of intensity n x rheobase. It is concluded that prolonged currents depress the processes leading to excitation and that (in the cells studied) repetitive firing is controlled both by the after-effects of firing (refractoriness) and by the depressant effects of sustained stimuli (accommodation). Development of subthreshold "graded activity" is an important process leading to excitation of eccentric cells, but is not the principal factor determining frequency of firing in response to constant currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号