首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-α-Keto oxazoles containing polar head groups in their C5-side chains were designed as fatty acid amide hydrolase (FAAH) inhibitors. Variation in the spacer length resulted in submicromolar α-keto-oxazole FAAH inhibitor (IC(50)=436 nM) presenting electrostatic stabilizing interactions between its polar head group contained in the C5-side chain and the hydrophilic pocket of the enzyme.  相似文献   

2.
Multi-target inhibitors have become increasing popular as a means to leverage the advantages of poly-pharmacology while simplifying drug delivery. Here, we describe dual inhibitors for soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH), two targets known to synergize when treating inflammatory and neuropathic pain. The structure activity relationship (SAR) study described herein initially started with t-TUCB (trans-4-[4-(3-trifluoromethoxyphenyl-l-ureido)-cyclohexyloxy]-benzoic acid), a potent sEH inhibitor that was previously shown to weakly inhibit FAAH. Inhibitors with a 6-fold increase of FAAH potency while maintaining high sEH potency were developed by optimization. Interestingly, compared to most FAAH inhibitors that inhibit through time-dependent covalent modification, t-TUCB and related compounds appear to inhibit FAAH through a time-independent, competitive mechanism. These inhibitors are selective for FAAH over other serine hydrolases. In addition, FAAH inhibition by t-TUCB appears to be higher in human FAAH over other species; however, the new dual sEH/FAAH inhibitors have improved cross-species potency. These dual inhibitors may be useful for future studies in understanding the therapeutic application of dual sEH/FAAH inhibition.  相似文献   

3.
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic, anti-inflammatory, anxiolytic, and antidepressant phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for treatment of pain, inflammation, and other central nervous system disorders. However, the FAAH inhibitors reported to date lack drug-like pharmacokinetic properties and/or selectivity. Herein we describe piperidine/piperazine ureas represented by N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF-750) and N-phenyl-4-(quinolin-2-ylmethyl)piperazine-1-carboxamide (PF-622) as a novel mechanistic class of FAAH inhibitors. PF-750 and PF-622 show higher in vitro potencies than previously established classes of FAAH inhibitors. Rather unexpectedly based on the high chemical stability of the urea functional group, PF-750 and PF-622 were found to inhibit FAAH in a time-dependent manner by covalently modifying the enzyme's active site serine nucleophile. Activity-based proteomic profiling revealed that PF-750 and PF-622 were completely selective for FAAH relative to other mammalian serine hydrolases. We hypothesize that this remarkable specificity derives, at least in part, from FAAH's special ability to function as a C(O)-N bond hydrolase, which distinguishes it from the vast majority of metabolic serine hydrolases in mammals that are restricted to hydrolyzing esters and/or thioesters. The piperidine/piperazine urea may thus represent a privileged chemical scaffold for the synthesis of FAAH inhibitors that display an unprecedented combination of potency and selectivity for use as potential analgesic and anxiolytic/antidepressant agents.  相似文献   

4.
Fatty acid amide hydrolase (FAAH) is a pharmaceutical target whose inhibition may lead to valuable therapeutics. Sensitive substrates for high-throughput assays are crucial for the rapid-screening FAAH inhibitors. Here we describe the development of novel and highly sensitive fluorescent assays for FAAH based on substituted aminopyridines. Examining the relationship between the structure and the fluorescence of substituted aminopyridines suggested that a methoxy group in the para position relative to the amino group in aminopyridines greatly increased the fluorescence (i.e., quantum yields approach unity). These novel fluorescent reporters had a high Stokes' shift of 94 nm, and their fluorescence in buffer systems increased with pH values from neutral to basic. Fluorescent substrates with these reporters displayed a very low fluorescent background and high aqueous solubility. Most importantly, fluorescent assays for FAAH based on these substrates were at least 25 times more sensitive than assays using related compounds with published colorimetric or fluorescent reporters. This property results in shorter assay times and decreased protein concentrations in the assays. Such sensitive assays will facilitate distinguishing the relative potency of powerful inhibitors of FAAH. When these fluorescent substrates were applied to human liver microsomes, results suggested that there was at least one amide hydrolase in addition to FAAH that could hydrolyze long-chain fatty acid amides. These results show that these fluorescent substrates are very valuable tools in FAAH activity assays including screening inhibitors by high-throughput assays instead of using the costly and labor-intensive radioactive ligands. Potential applications of novel fluorescent reporters are discussed.  相似文献   

5.
The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8–10, while diverse leaving groups are tolerated for FAAH inhibitors.  相似文献   

6.
The uptake of arachidonoyl ethanolamide (anandamide, AEA) in rat basophilic leukemia cells (RBL-2H3) has been proposed to occur via a saturable transporter that is blocked by specific inhibitors. Measuring uptake at 25 s, when fatty acid amide hydrolase (FAAH) does not appreciably affect uptake, AEA accumulated via a nonsaturable mechanism at 37 degrees C. Interestingly, saturation was observed when uptake was plotted using unbound AEA at 37 degrees C. Such apparent saturation can be explained by rate-limited delivery of AEA through an unstirred water layer surrounding the cells (1). In support of this, we observed kinetics consistent with rate-limited diffusion at 0 degrees C. Novel transport inhibitors have been synthesized that are either weak FAAH inhibitors or do not inhibit FAAH in vitro (e.g. UCM707, OMDM2, and AM1172). In the current study, none of these purported AEA transporter inhibitors affected uptake at 25 s. Longer incubation times illuminate downstream events that drive AEA uptake. Unlike the situation at 25 s, the efficacy of these inhibitors was unmasked at 5 min with appreciable inhibition of AEA accumulation correlating with partial inhibition of AEA hydrolysis. The uptake and hydrolysis profiles observed with UCM707, VDM11, OMDM2, and AM1172 mirrored two selective and potent FAAH inhibitors CAY10400 and URB597 (at low concentrations), indicating that weak inhibition of FAAH can have a pronounced effect upon AEA uptake. At 5 min, the putative transport inhibitors did not reduce AEA uptake in FAAH chemical knock-out cells. This strongly suggests that the target of UCM707, VDM11, OMDM2, and AM1172 is not a transporter at the plasma membrane but rather FAAH, or an uncharacterized intracellular component that delivers AEA to FAAH. This system is therefore unique among neuro/immune modulators because AEA, an uncharged hydrophobic molecule, diffuses into cells and partial inhibition of FAAH has a pronounced effect upon its uptake.  相似文献   

7.
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat pain, inflammation, and other central nervous system disorders. Herein, a series of novel heterocyclic carbohydrazide derivatives were firstly designed by the classic scaffold-hopping strategy. Then, multi-steps synthesis and human FAAH enzyme inhibiting activity assays were conducted. Among them, compound 26 showed strong inhibition against human FAAH with IC50 of 2.8 μM. Corresponding docking studies revealed that the acyl hydrazide group of compound 26 well-occupied the acyl-chain binding pocket. It also exhibited high selectivity towards FAAH when comparing with CES2 and MAGL. Additionally, compound 26 effectively suppressed the LPS-induced neuroinflammation of microglial cells (BV2) via the reduction of interleukin-1β and tumor necrosis factor-α. Our results provided significative lead compounds for the further discovery of novel selective and safe FAAH inhibitors with potent anti-neuroinflammation activity.  相似文献   

8.
Anandamide is an endogenous compound that acts as an agonist at cannabinoid receptors. It is inactivated via intracellular degradation after its uptake into cells by a carrier-mediated process that depends upon a concentration gradient. The fate of anandamide in those cells containing an amidase called fatty-acid amide hydrolase (FAAH) is hydrolysis to arachidonic acid and ethanolamine. The active site nucleophilic serine of FAAH is inactivated by a variety of inhibitors including methylarachidonylfluorophosphonate (MAFP) and palmitylsulfonyl fluoride. In the current report, the net uptake of anandamide in cultured neuroblastoma (N18) and glioma (C6) cells, which contain FAAH, was decreased by nearly 50% after 6 min of incubation in the presence of MAFP. Uptake in laryngeal carcinoma (Hep2) cells, which lack FAAH, is not inhibited by MAFP. Free anandamide was found in all MAFP-treated cells and in control Hep2 cells, whereas phospholipid was the main product in N18 and C6 control cells when analyzed by TLC. The intracellular concentration of anandamide in N18, C6, and Hep2 cells was up to 18-fold greater than the extracellular concentration of 100 nm, which strongly suggests that it is sequestered within the cell by binding to membranes or proteins. The accumulation of anandamide and/or its breakdown products was found to vary among the different cell types, and this correlated approximately with the amount of FAAH activity, suggesting that the breakdown of anandamide is in part a driving force for uptake. This was shown most clearly in Hep2 cells transfected with FAAH. The uptake in these cells was 2-fold greater than in vector-transfected or untransfected Hep2 cells. Therefore, it appears that FAAH inhibitors reduce anandamide uptake by cells by shifting the anandamide concentration gradient in a direction that favors equilibrium. Because inhibition of FAAH increases the levels of extracellular anandamide, it may be a useful target for the design of therapeutic agents.  相似文献   

9.
The structure–activity relationships for a series of heteroaryl urea inhibitors of fatty acid amide hydrolase (FAAH) are described. Members of this class of inhibitors have been shown to inactivate FAAH by covalent modification of an active site serine with subsequent release of an aromatic amine from the urea electrophile. Systematic Ames II testing guided the optimization of urea substituents by defining the structure–mutagenicity relationships for the released aromatic amine metabolites. Potent FAAH inhibitors were identified having heteroaryl amine leaving groups that were non-mutagenic in the Ames II assay.  相似文献   

10.
Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are serine hydrolases. cPLA2α is involved in the generation of pro-inflammatory lipid mediators, FAAH terminates the anti-inflammatory effects of endocannabinoids. Therefore, inhibitors of these enzymes may represent new drug candidates for the treatment of inflammation. We have reported that certain 1-heteroarylpropan-2-ones are potent inhibitors of cPLA2α and FAAH. The serine reactive ketone group of these compounds, which is crucial for enzyme inhibition, is readily metabolized resulting in inactive alcohol derivatives. In order to obtain metabolically more stable inhibitors, we replaced this moiety by α-ketoheterocyle, cyanamide and nitrile serine traps. Investigations on activity and metabolic stability of these substances revealed that in all cases an increased metabolic stability was accompanied by a loss of inhibitory potency against cPLA2α and FAAH, respectively.  相似文献   

11.
A binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes. Coincubation with an FAAH inhibitor, URB-597, competitively displaced the [3H]MAEA on the FAAH microsomes. The released radiolabel was then detected through an interaction with the SPA beads. The assay is specific for FAAH given that microsomes prepared from cells expressing the inactive FAAH-S241A mutant or vector alone had no significant ability to bind [3H]MAEA. Furthermore, the binding of [3H]MAEA to FAAH microsomes was abolished by selective FAAH inhibitors in a dose-dependent manner, with IC50 values comparable to those seen in a functional assay. This novel SPA has been validated and demonstrated to be simple, sensitive, and amenable to high-throughput screening.  相似文献   

12.
Substituted (thio)hydantoins (2-thioxoimidazolidinones and imidazolidinediones) were reported as new potential reversible inhibitors of fatty acid amide hydrolase (FAAH). Their binding mode to FAAH was explored to rationalize their activity and give idea to design highly active inhibitors. Starting from the crystal structure of one of these molecules, docking studies provide us with rational basis for the design of new inhibitors within the thiohydantoin family.  相似文献   

13.
Fatty acid amides constitute a large and diverse class of lipid transmitters that includes the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The magnitude and duration of fatty acid amide signaling are controlled by enzymatic hydrolysis in vivo. Fatty acid amide hydrolase (FAAH) activity in mammals has been primarily attributed to a single integral membrane enzyme of the amidase signature (AS) family. Here, we report the functional proteomic discovery of a second membrane-associated AS enzyme in humans that displays FAAH activity. The gene that encodes this second FAAH enzyme was found in multiple primate genomes, marsupials, and more distantly related vertebrates, but, remarkably, not in a number of lower placental mammals, including mouse and rat. The two human FAAH enzymes, which share 20% sequence identity and are referred to hereafter as FAAH-1 and FAAH-2, hydrolyzed primary fatty acid amide substrates (e.g. oleamide) at equivalent rates, whereas FAAH-1 exhibited much greater activity with N-acyl ethanolamines (e.g. anandamide) and N-acyl taurines. Both enzymes were sensitive to the principal classes of FAAH inhibitors synthesized to date, including O-aryl carbamates and alpha-keto heterocycles. These data coupled with the overlapping, but distinct tissue distributions of FAAH-1 and FAAH-2 suggest that these proteins may collaborate to control fatty acid amide catabolism in primates. The apparent loss of the FAAH-2 gene in some lower mammals should be taken into consideration when extrapolating genetic or pharmacological findings on the fatty acid amide signaling system across species.  相似文献   

14.
Fatty acid amide hydrolase (FAAH) has attracted significant attention due to its promise as an analgesic target. This has resulted in the discovery of numerous chemical classes as inhibitors of this potential therapeutic target. In this paper we disclose a new series of novel FAAH irreversible azetidine urea inhibitors. In general these compounds illustrate potent activity against the rat FAAH enzyme. Our SAR studies allowed us to optimize this series resulting in the identification of compounds 13 which were potent inhibitors of both human and rat enzyme. This series of compounds illustrated good hydrolase selectivity along with good PK properties.  相似文献   

15.
Treatment of intact human neuroblastoma CHP100 cells with anandamide (arachidonoylethanolamide, AEA) or 2-arachidonoylglycerol (2-AG) inhibits intracellular fatty acid amide hydrolase (FAAH). This effect was not associated with covalent modifications of FAAH, since specific inhibitors of farnesyltransferase, kinases, phosphatases, glycosyltransferase or nitric oxide synthase were ineffective. Electrophoretic analysis of (33)P-labelled proteins, Western blot with anti-phosphotyrosine antibodies, and glycan analysis of cellular proteins confirmed the absence of covalent modifications of FAAH. The inhibition by AEA was paralleled by an increased arachidonate release, which was not observed upon treatment of cells with linoleoylethanolamide, palmitoylethanolamide, or oleoylethanolamide. Moreover, cell treatment with AEA or 2-AG increased the activity of cyclooxygenase and 5-lipoxygenase, and the hydro(pero)xides generated from arachidonate by lipoxygenase were shown to inhibit FAAH, with inhibition constants in the low micromolar range. Consistently, inhibitors of 5-lipoxygenase, but not those of cyclooxygenase, significantly counteracted the inhibition of FAAH by AEA or 2-AG.  相似文献   

16.
Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgetic and anti-inflammatory drugs. We recently reported that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (10) and related compounds are inhibitors of cPLA2α. Since cPLA2α and FAAH possess several common structural features, we now screened this substance series together with some new derivatives for FAAH inhibition. Some of the assayed compounds proved to be selective cPLA2α inhibitors, while others showed high FAAH and moderate cPLA2α inhibitory potency. Furthermore, several derivatives were favorably active against both enzymes and, therefore, could represent agents, which have improved analgetic and anti-inflammatory qualities in comparison with selective cPLA2α and FAAH inhibitors.  相似文献   

17.
Fatty acid amide hydrolase (FAAH) is a membrane-associated enzyme that catalyzes the hydrolysis of several endogenous bioactive lipids, including anandamide (AEA), N-palmitoylethanolamine (PEA), oleamide, and N-oleoylethanolamine (OEA). These fatty acid amides participate in many physiological activities such as analgesia, anxiety, sleep modulation, anti inflammatory responses, and appetite suppression. Because FAAH plays an essential role in controlling the tone and activity of these endogenous bioactive lipids, this enzyme has been implicated to be a drug target for the therapeutic management of pain, anxiety, and other disorders. In an effort to discover FAAH inhibitors, the authors have previously reported the development of a novel fluorescent assay using purified FAAH microsomes as an enzyme source and a fluorogenic substrate, arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA). Herein, the authors have adapted this assay to a high-throughput format and have screened a large library of small organic compounds, identifying a number of novel FAAH inhibitors. These data further verify that this fluorescent assay is sufficiently robust, efficient, and low-cost for the identification of FAAH inhibitory molecules and open this class of enzymes for therapeutic exploration.  相似文献   

18.
Summary. Fatty acid amide hydrolase (FAAH), a membrane-anchored enzyme responsible for the termination of endocannabinoid signalling, is an attractive target for treating conditions such as pain and anxiety. Inhibitors of the enzyme, optimized using rodent FAAH, are known but their pharmacology and medicinal chemistry properties on the human FAAH are missing. Therefore recombinant human enzyme would represent a powerful tool to evaluate new drug candidates. However, the production of high amounts of enzyme is hampered by the known refractiveness of FAAH to overexpression. Here, we report the successful overexpression of rat and human FAAH as a fusion to the E. coli maltose-binding protein, retaining catalytic properties of native FAAH. Several known FAAH inhibitors were tested and differences in their potencies toward the human and rat FAAH were found, underscoring the importance of using a human FAAH in the development of inhibitors. Authors’ address: Didier M. Lambert, Unité de Chimie pharmaceutique et de Radiopharmacie, Université catholique de Louvain, Avenue E. Mounier 73.40, 1200 Bruxelles, Belgique  相似文献   

19.
Fatty acid amide hydrolase (FAAH) has emerged as a potential target for developing analgesic, anxiolytic, antidepressant, sleep-enhancing, and anti-inflammatory drugs, and tremendous efforts have been made to discover potent and selective inhibitors of FAAH. Most known potent FAAH inhibitors described to date employ covalent mechanisms, inhibiting the enzyme either reversibly or irreversibly. Recently, a benzothiazole-based analogue (1) has been described possessing a high potency against FAAH yet lacking a structural feature previously known to interact with FAAH covalently. However, covalent inhibition of FAAH by 1 has not been fully ruled out, and the issue of reversibility has not been addressed. Confirming previous reports, 1 inhibited recombinant human FAAH (rhFAAH) with high potency with IC(50) ~2 nM. It displayed an apparently noncompetitive and irreversible inhibition, titrating rhFAAH stoichiometrically within normal assay times. The inhibition appeared to be time dependent, but the time dependence only improved potency by a small degree (from ~8 to ~2 nM). However, mass spectrometric analyses of the reaction mixture failed to reveal any cleavage product or covalent adduct and showed full recovery of the parent compound, ruling out covalent, irreversible inhibition. Dialysis revealed recovery of enzyme activity from enzyme-inhibitor complex over a prolonged time (>10 h), demonstrating that 1 is indeed a reversible, albeit slowly dissociating inhibitor of FAAH. Molecular docking indicated that the sulfonamide group of 1 could form hydrogen bonds with several residues involved in catalysis, thereby mimicking the transition state. The long residence time displayed by 1 does not appear to derive exclusively from great thermodynamic potency and is consistent with an increased kinetic energy barrier that prevents dissociation from happening quickly.  相似文献   

20.
Human mast cells (HMC-1) take up anandamide (arachidonoyl-ethanolamide, AEA) with a saturable process (K(m)=200+/-20 nM, V(max)=25+/-3 pmol min(-1) mg protein(-1)), enhanced two-fold over control by nitric oxide-donors. Internalized AEA was hydrolyzed by a fatty acid amide hydrolase (FAAH), whose activity became measurable only in the presence of 5-lipoxygenase, but not cyclooxygenase, inhibitors. FAAH (K(m)=5.0+/-0.5 microM, V(max)=160+/-15 pmol min(-1) mg protein(-1)) was competitively inhibited by palmitoylethanolamide. HMC-1 cells did not display a functional cannabinoid receptor on their surface and neither AEA nor palmitoylethanolamide affected tryptase release from these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号