首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the discovery of beta-D-2'-deoxy-2'-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of beta-D- and L-2'-deoxy-2'-fluoroibonucleosides with modifications at 5 and/or 4 positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The introduction of the 2'-fluoro group was achieved by either fluorination of 2,2'-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compounds, namely beta-D-2'-deoxy-2',5-difluorocytidine (5), had anti-HCV activity in the subgenomic HCV replicon cell line, and inhibitory activity against ribosomal RNA. As beta-D-N4-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, the two functionalities of the N4-hydroxyl and the 2'-fluoro were combined into one molecule, yielding beta-D-2'-deoxy-2'-fluoro-N4-hydroxycytidine (12). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the L-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot reliably predict anti-HCV activity in vitro.  相似文献   

2.
On the basis of our previous study on antiviral agents against the severe acute respiratory syndrome (SARS) coronavirus, a series of nucleoside analogues whose 5'-hydroxyl groups are masked by various protective groups such as carboxylate, sulfonate, and ether were synthesized and evaluated to develop novel anti-hepatitis C virus (HCV) agents. Among these, several 5'-O-masked analogues of 6-chloropurine-2'-deoxyriboside (e.g., 5'-O-benzoyl, 5'-O-p-methoxybenzoyl, and 5'-O-benzyl analogues) were found to exhibit effective anti-HCV activity. In particular, the 5'-O-benzoyl analogue exhibited the highest potency with an EC(50) of 6.1 microM in a cell-based HCV replicon assay. Since the 5'-O-unmasked analogue (i.e., 6-chloropurine-2'-deoxyriboside) was not sufficiently potent (EC(50)=47.2 microM), masking of the 5'-hydroxyl group seems to be an effective method for the development of anti-HCV agents. Presently, we hypothesize two roles for the 5'-O-masked analogues: One is the role as an anti-HCV agent by itself, and the other is as a prodrug of its 5'-O-demasked (deprotected) derivative.  相似文献   

3.
We reported previously that Artemisinin (ART), a widely used anti-malarial drug, is an inhibitor of in vitro HCV subgenomic replicon replication. We here demonstrate that ART exerts its antiviral activity also in hepatoma cells infected with full length infectious HCV JFH-1. We identified a number of ART analogues that are up to 10-fold more potent and selective as in vitro inhibitors of HCV replication than ART. The iron donor Hemin only marginally potentiates the anti-HCV activity of ART in HCV-infected cultures. Carbon-centered radicals have been shown to be critical for the anti-malarial activity of ART. We demonstrate that carbon-centered radicals-trapping (the so-called TEMPO) compounds only marginally affect the anti-HCV activity of ART. This provides evidence that carbon-centered radicals are not the main effectors of the anti-HCV activity of the Artemisinin. ART and analogues may possibly exert their anti-HCV activity by the induction of reactive oxygen species (ROS). The combined anti-HCV activity of ART or its analogues with L-N-Acetylcysteine (L-NAC) [a molecule that inhibits ROS generation] was studied. L-NAC significantly reduced the in vitro anti-HCV activity of ART and derivatives. Taken together, the in vitro anti-HCV activity of ART and analogues can, at least in part, be explained by the induction of ROS; carbon-centered radicals may not be important in the anti-HCV effect of these molecules.  相似文献   

4.
Based on the discovery of β-D-2′-deoxy-2′-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of β-D- and l-2′-deoxy-2′-fluororibonucleosides with modifications at 5 and/or 4 positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The introduction of the 2′-fluoro group was achieved by either fluorination of 2,2′-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compounds, namely β-D-2′-deoxy-2′,5-difluorocytidine (5), had anti-HCV activity in the subgenomic HCV replicon cell line, and inhibitory activity against ribosomal RNA. As β-D-N4-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, the two functionalities of the N4-hydroxyl and the 2′-fluoro were combined into one molecule, yielding β-D-2′-deoxy-2′-fluoro-N4-hydroxycytidine (12). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the l-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot reliably predict anti-HCV activity in vitro.  相似文献   

5.
Based on the discovery of (2'R)-d-2'-deoxy-2'-fluorocytidine as a potent anti-hepatitis C virus (HCV) agent, a series of d- and l-2'-deoxy-2'-fluororibonucleosides with modifications at 5- and/or 4-positions were synthesized and evaluated for their in vitro activity against HCV and bovine viral diarrhea virus (BVDV). The key step in the synthesis, the introduction of 2'-fluoro group, was achieved by either fluorination of 2,2'-anhydronucleosides with hydrogen fluoride-pyridine or potassium fluoride, or a fluorination of arabinonucleosides with DAST. Among the 27 analogues synthesized, only the 5-fluoro compound, namely (2'R)-d-2'-deoxy-2',5-difluorocytidine (13), demonstrated potent anti-HCV activity and toxicity to ribosomal RNA. The replacement of the 4-amino group with a thiol group resulted in the loss of activity, while the 4-methylthio substituted analogue (25) exhibited inhibition of ribosomal RNA. As N(4)-hydroxycytidine (NHC) had previously shown potent anti-HCV activity, we combined the two functionalities of the N(4)-hydroxyl and the 2'-fluoro into one molecule, resulting (2'R)-d-2'-deoxy-2'-fluoro-N(4)-hydroxycytidine (23). However, this nucleoside showed neither anti-HCV activity nor toxicity. All the l-forms of the analogues were devoid of anti-HCV activity. None of the compounds showed anti-BVDV activity, suggesting that the BVDV system cannot always predict anti-HCV activity.  相似文献   

6.
On the basis of potent anti-HCV activity of 2'-C-methyladenosine, novel 2'-C-hydroxymethyladenosine analogues 2a-c were synthesized from d-ribose in order to lead to favorable interaction with HCV polymerase. Among compounds tested, adenosine derivative 2a exhibited potent anti-HCV activity, indicating that the hydroxyl group of 2'-C-hydroxymethyl substituent led to favorable interaction with HCV polymerase.  相似文献   

7.
The synthesis of carbocyclic and phosphonocarbocyclic analogues of ribavirin, an anti-HCV inhibitor, are described. Those compounds were evaluated against HCV but also against other important viruses in order to determine their spectrum of antiviral activity. Compounds 6 and 13 displayed a moderate IC(50) against HIV-1 of 43.8 and 37 microM, respectively.  相似文献   

8.
Heat-stress cognate 70 (Hsc70) is a host factor that helps hepatitis C virus (HCV) to complete its life cycle in infected hepatocytes. Using Hsc70 as a target for HCV inhibition, a series of novel N-substituted benzyl matrinic/sophoridinic acid derivatives was synthesized and evaluated for their anti-HCV activity in vitro. Among these analogues, compound 7c possessing N-p-methylbenzyl afforded an appealing ability to inhibit HCV replication with SI value over 53. Furthermore, it showed a good oral pharmacokinetic profile with area-under-curve (AUC) of 13.4 µM·h, and a considerably good safety in oral administration in mice (LD50>1000 mg/kg). As 7c suppresses HCV replication via an action mode distinctly different from that of the marketed anti-HCV drugs, it has been selected as a new mechanism anti-HCV candidate for further investigation, with an advantage of no or decreased chance to induce drug-resistant mutations.  相似文献   

9.
The discovery of 2'-spirocyclopropyl-ribocytidine as a potent inhibitor of RNA synthesis by NS5B (IC(50) = 7.3 μM), the RNA polymerase encoded by hepatitis C virus (HCV), has led to the synthesis and biological evaluation of carbocyclic versions of 2'-spiropropyl-nucleosides from cyclopentenol 6. Spirocyclopropylation of enone 7 was completed by using (2-chloroethyl)-dimethylsulfonium iodide and potassium t-butoxide to form the desired intermediate 9a. The synthesized nucleoside analogues, 18, 19, 26, and 27, were assayed for their ability to inhibit HCV RNA replication in a subgenomic replicon Huh7 cell line. The synthesized cytosine nucleoside 19 showed moderate anti-HCV activity (IC(50) = 14.4 μM).  相似文献   

10.
Caffeic acid phenethyl ester (CAPE) has been reported as a multifunctional compound. In this report, we tested the effect of CAPE and its derivatives on hepatitis C virus (HCV) replication in order to develop an effective anti-HCV compound. CAPE and CAPE derivatives exhibited anti-HCV activity against an HCV replicon cell line of genotype 1b with EC50 values in a range from 1.0 to 109.6 µM. Analyses of chemical structure and antiviral activity suggested that the length of the n-alkyl side chain and catechol moiety are responsible for the anti-HCV activity of these compounds. Caffeic acid n-octyl ester exhibited the highest anti-HCV activity among the tested derivatives with an EC50 value of 1.0 µM and an SI value of 63.1 by using the replicon cell line derived from genotype 1b strain Con1. Treatment with caffeic acid n-octyl ester inhibited HCV replication of genotype 2a at a similar level to that of genotype 1b irrespectively of interferon signaling. Caffeic acid n-octyl ester could synergistically enhance the anti-HCV activities of interferon-alpha 2b, daclatasvir, and VX-222, but neither telaprevir nor danoprevir. These results suggest that caffeic acid n-octyl ester is a potential candidate for novel anti-HCV chemotherapy drugs.  相似文献   

11.
NS5A inhibitors are a new class of direct-acting antiviral agents which display very potent anti-HCV activity in vitro and in humans. Rationally designed modifications to the central biphenyl linkage of a known NS5A series led to selection of several compounds that were synthesized and evaluated in a HCV genotype 1b replicon. The straight triphenyl linked compound 11a showed similar anti-HCV activity to the clinical compound BMS-790052 and a superior cytotoxicity profile in three different cell lines, with an EC(50) value of 26 pM and a therapeutic index of over four million in an HCV replicon assay. This triphenyl analog warrants further preclinical evaluation as an anti-HCV agent.  相似文献   

12.
Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite’s 4–5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans.  相似文献   

13.
Previous investigations identified 2′-C-Me-branched ribo-C-nucleoside adenosine analogues, 1, which contains a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base, and 2, which contains an imidazo[2,1-f][1,2,4]triazin-4-amine heterocyclic base as two compounds with promising anti-HCV in vitro activity. This Letter describes the synthesis and evaluation of a series of novel analogues of these compounds substituted at the 2-, 7-, and 8-positions of the heterocyclic bases. A number of active new HCV inhibitors were identified but most compounds also demonstrated unacceptable cytotoxicity. However, the 7-fluoro analogue of 1 displayed good potency with a promising cytotherapeutic margin.  相似文献   

14.
On the basis of potent anti-hepatitis C virus (HCV) activity of 2′-C-hydroxymethyladenosine, 3′-C-substituted-methyl-ribofuranosyl pyrimidine and purine nucleosides were designed and synthesized from d-xylose. Among compounds tested, all adenine analogues, 4a, 4d, and 4g showed significant anti-HCV activity in a replicon-based cell assay irrespective of the substituent (Y = OH, N3, or F) at the 3′-C-substituted methyl position, among which 4g (Y = N3) was the most potent, but it is also cytotoxic. This study guarantees the 3′-C-substituted-methyl nucleoside serves as a new template for the development of new anti-HCV agents.  相似文献   

15.
A total of 176 hospital patients with chronic hepatitis C (CHC), among them 110 males and 66 females, were examined. The spectrum of antibodies to four hepatitis C virus (HCV) proteins (core, NS3, NS4, NS5) and in 142 patients --IgM antibodies to HCV (anti-HCV IgM) were determined. In 92% of the CHC patients antibodies to core, NS3 and NS4 proteins were simultaneously detected. Differences in the detection of antibodies to HCV in males and females were not statistically reliable. In CHC patients aged up to 20 years anti-NS4 and anti-NS5 were less frequently detected. Among males of different age groups reliable differences in the detection rate of anti-NS5 were registered, while among females of different age groups no such differences were observed. With the increase of age these antibodies were detected somewhat more often. In females over 60 years anti-HCV IgM occurred more often than in males of the same age. The levels of alanine aminotransferase (ALT) were higher in persons with the presence of anti-NS5 and anti-HCV IgM than in persons with their absence. In all groups of CHC patients with biochemical activity and liver cirrhosis the detection rate of anti-HCV IgM was significantly higher than in patients with normal ALT activity. The antibody spectrum with the simultaneous absence of HCV IgM and anti-NS5, while found to contain antibodies to other HCV antigens, was registered significantly less frequently in patients with moderate and high CHC activity and the liver cirrhosis induced by HCV infection.  相似文献   

16.
Previously, we found that bovine and human lactoferrin (LF) specifically inhibited hepatitis C virus (HCV) infection in cultured non-neoplastic human hepatocyte-derived PH5CH8 cells, and we identified 33 amino acid residues (termed C-s3-33; amino acid 600-632) from human LF that were primarily responsible for the binding activity to the HCV E2 envelope protein and for the inhibiting activity against HCV infection. Since the anti-HCV activity of C-s3-33 was weaker than that of human LF, we speculated that an increase of E2 protein-binding activity might contribute to the enhancement of anti-HCV activity. To test this possibility, we made two repeats [(C-s3-33)(2)] and three repeats [(C-s3-33)(3)] of C-s3-33 and characterized them. Far-Western blot analysis revealed that the E2 protein-binding activities of (C-s3-33)(2) and (C-s3-33)(3) became stronger than that of the C-s3-33, and that the binding activity of (C-s3-33)(3) was stronger than that of (C-s3-33)(2). Using an HCV infection system in PH5CH8 cells, we demonstrated that the anti-HCV activities of (C-s3-33)(2) and (C-s3-33)(3) became stronger than that of the C-s3-33. Furthermore, using a recently developed infection system with a VSV pseudotype harboring the green fluorescent protein gene and the native E1 and E2 genes, we demonstrated that the antiviral activities of (C-s3-33)(2) and (C-s3-33)(3) were stronger than that of C-s3-33. These results suggest that tandem repeats of LF-derived anti-HCV peptide are useful as anti-HCV reagents.  相似文献   

17.
Interferon (IFN)-alpha monotherapy, as well as the more effective combination therapy of IFN-alpha and ribavirin, are currently used for patients with chronic hepatitis C caused by hepatitis C virus (HCV) infection, although the mechanisms of the antiviral effects of these reagents on HCV remain ambiguous, and side effects such as anemia due to the administration of ribavirin present a problem for patients who are advanced in years. Using a recently developed reporter assay system in which genome-length dicistronic HCV RNA encoding Renilla luciferase gene was found to replicate efficiently, we found that mizoribine, an imidazole nucleoside, inhibited HCV RNA replication. The anti-HCV activity of mizoribine (IC50: approximately 100 microM) was similar to that of ribavirin. Using this genome-length HCV RNA replication monitor system, we were the first to demonstrate that the combination of IFN-alpha and ribavirin exhibited more effective anti-HCV activity than the use of IFN-alpha alone. Moreover, we found that the anti-HCV activity of mizoribine in co-treatment with IFN-alpha was at least equivalent to that of ribavirin. This effect was apparent in the presence of at least 5 microM mizoribine. Since mizoribine is currently used in several clinical applications and has not been associated with severe side effects, mizoribine is considered to be of potential use as a new anti-HCV reagent in combination with IFN-alpha.  相似文献   

18.
Evidence indicates that hepatitis C virus (HCV) utilizes cellular cyclophilin proteins in its replication, and cyclophilin inhibitors represent a new class of anti-HCV agents. We have established an efficient synthetic methodology to generate FR901459 derivatives via N, O-acyl migration reaction while avoiding total synthesis. Through a detailed structure–activity relationship study, we improved anti-HCV activity while decreasing immunosuppressive activity. Additionally, we discovered the importance of substitution at the 3 position for not only improving anti-HCV activity but also pharmacokinetic profile. Finally, by striking an appropriate balance between potency, solubility, and permeability, we discovered ASP5286 (13) as a potential clinical candidate for anti-HCV therapy.  相似文献   

19.
Thirty novel α- and β-d-2'-deoxy-2'-fluoro-2'-C-methyl-7-deazapurine nucleoside analogs were synthesized and evaluated for in vitro antiviral activity. Several α- and β-7-deazapurine nucleoside analogs exhibited modest anti-HCV activity and cytotoxicity. Four synthesized 7-deazapurine nucleoside phosphoramidate prodrugs (18-21) showed no anti-HCV activity, whereas the nucleoside triphosphates (22-24) demonstrated potent inhibitory effects against both wild-type and S282T mutant HCV polymerases. Cellular pharmacology studies in Huh-7 cells revealed that the 5'-triphosphates were not formed at significant levels from either the nucleoside or the phosphoramidate prodrugs, indicating that insufficient phosphorylation was responsible for the lack of anti-HCV activity. Evaluation of anti-HIV-1 activity revealed that an unusual α-form of 7-carbomethoxyvinyl substituted nucleoside (10) had good anti-HIV-1 activity (EC(50)=0.71±0.25 μM; EC(90)=9.5±3.3 μM) with no observed cytotoxicity up to 100 μM in four different cell lines.  相似文献   

20.
Hepatitis C virus (HCV) infection is a severe liver disease that often leads to liver cirrhosis and hepatocellular carcinoma (HCC). Current therapy is inadequate to conquer this viral disease. In this study, we identified parthenolide (1), an active component in feverfew, a popular remedy for fever and migraine, as a lead compound with an EC50 value of 2.21 microM against HCV replication in a subgenomic RNA replicon assay system. Parthenolide is able to potentiate the interferon alpha-exerted anti-HCV effect. Several commercially available sesquiterpene lactones (2-5) structurally analogous to parthenolide and a series of synthesized Michael-type adducts of parthenolide (12-18) also exhibit micromolar concentrations for anti-HCV activities. Structure-activity relationship was elucidated to reveal that the spatial arrangement of the terpenoid skeleton fused with an alpha-methylene-gamma-lactone moiety produces maximal anti-HCV activity. In addition, a strong anti-HCV potency indicates a possibility of secondary amino adducts (12-18) converting back to parthenolide or being replaced by the nucleophilic residues of proteins inside cells. This work shows that screening of natural products is a viable and fast way for identifying novel molecular diversity as potential drug leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号