首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. Nerve growth factor (NGF) is increasingly recognized as a potent immunomodulator, promoting "cross-talk" between various types of immune system cells. The present study describes the expression of NGF during thymus regeneration following acute involution induced by cyclophosphamide in the rat. Immunohistochemical stain demonstrated not only the presence of NGF but also its upregulated expression mainly in the subcapsular, paraseptal, and perivascular epithelial cells, and medullary epithelial cells including Hassall's corpuscles in both the normal and regenerating thymus. Biochemical data obtained using Western blot and RT-PCR supported these results and showed that thymic extracts contain NGF protein and mRNA, at higher levels during thymus regeneration. Thus, our results suggest that NGF expressed in these thymic epithelial cells plays a role in the T lymphopoiesis associated with thymus regeneration during recovery from acute thymic involution.  相似文献   

2.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor or vasculotropin, is a recently characterized endothelial-specific mitogen which is angiogenic in vivo. Here we demonstrate that VEGF is angiogenic in vitro: when added to microvascular endothelial cells grown on the surface of three-dimensional collagen gels, VEGF induces the cells to invade the underlying matrix and to form capillary-like tubules, with an optimal effect at approximately 2.2nM (100ng/ml). When compared to basic fibroblast growth factor (bFGF) at equimolar (0.5nM) concentrations, VEGF was about half as potent. The most striking effect was seen in combination with bFGF: when added simultaneously, VEGF and bFGF induced an in vitro angiogenic response which was far greater than additive, and which occurred with greater rapidity than the response to either cytokine alone. These results demonstrate that like bFGF, VEGF induces an angiogenic response via a direct effect on endothelial cells, and that by acting in concert, these two cytokines have a potent synergistic effect on the induction of angiogenesis in vitro. We suggest that the synergism between VEGF and bFGF plays an important role in the control of angiogenesis in vivo.  相似文献   

3.
The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.  相似文献   

4.
Neural driven angiogenesis by overexpression of nerve growth factor   总被引:4,自引:2,他引:2  
Mechanisms regulating angiogenesis are crucial in adjusting tissue perfusion on metabolic demands. We demonstrate that overexpression of nerve growth factor (NGF) in brown adipose tissue (BAT) of NGF-transgenic mice elevates both mRNA and protein levels of vascular endothelial growth factor (VEGF) and VEGF-receptors. Increased vascular permeability, leukocyte–endothelial interactions (LEI), and tissue perfusion were measured using intravital microscopy. NGF-stimulation of adipocytes and endothelial cells elevates mRNA expression of VEGF and its receptors, an effect blocked by NGF neutralizing antibodies. These data suggest an activation of angiogenesis as a result of both: stimulation of adipozytes and direct mitogenic effects on endothelial cells. The increased nerve density associated with vessels strengthened our hypothesis that tissue perfusion is regulated by neural control of vessels and that the interaction between the NGF and VEGF systems is the critical driver for the activated angiogenic process. The interaction of VEGF- and NGF-systems gives new insights into neural control of organ vascularization and perfusion.  相似文献   

5.
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.  相似文献   

6.
Angiogenesis is an important component of many physiological processes, such as the female sexual cycle, placenta formation, the processes of growth and differentiation of tissues, and reparative processes including wound healing, fracture repair, and liver regeneration. The formation of new blood vessels during angiogenesis and vasculogenesis allows the growth and functioning of multicellular organisms. Pathological angiogenesis most commonly occurs in ischaemic, inflammatory and neoplastic diseases. Conditions in the pathogenesis of which angiogenesis plays an important role are sometimes labelled angiogenic diseases. To date, a number of pro-and anti-angiogenic factors have been defined. VEGF is the only specific mitogen for endothelial cells. It stimulates their growth and inhibits apoptosis, increases vascular permeability in many tissues, promotes vasculogenesis and angiogenesis. VEGF signalling activity in relation to the cell is dependent on having its specific membrane receptors (Flt-1, KDR, Flt-4). Angiogenesis plays a protective role in ischaemic heart disease and myocardial infarction. Angiogenesis extends life for patients after a stroke. Most of the facts about physiological angiogenesis are derived from studies into liver regeneration as a result of an acute injury or partial hepatectomy. Pathological hepatic angiogenesis occurs in the course of inflammation, fibrosis, hypoxia, and during tumourogenesis. There is interesting data relating to liver steatosis and obesity.  相似文献   

7.
Angiogenesis sustains tumor growth and metastasis, and recent studies indicate that the vascular endothelium regulates tissue mass. In the prostate, androgens drive angiogenic inducers to stimulate growth, whereas androgen withdrawal leads to decreased vascular endothelial growth factor, vascular regression and epithelial cell apoptosis. Here, we identify the angiogenesis inhibitor pigment epithelium-derived factor (PEDF) as a key inhibitor of stromal vasculature and epithelial tissue growth in mouse prostate and pancreas. In PEDF-deficient mice, stromal vessels were increased and associated with epithelial cell hyperplasia. Androgens inhibited prostatic PEDF expression in cultured cells. In vivo, androgen ablation increased PEDF in normal rat prostates and in human cancer biopsies. Exogenous PEDF induced tumor epithelial apoptosis in vitro and limited in vivo tumor xenograft growth, triggering endothelial apoptosis. Thus, PEDF regulates normal pancreas and prostate mass. Its androgen sensitivity makes PEDF a likely contributor to the anticancer effects of androgen ablation.  相似文献   

8.
The nerve growth factor (NGF) receptors p75LNGR and TrkA are expressed by thymic epithelial cells. Presumably, the NGF-TrkA system is involved in the paracrine communication between thymic epithelial cells and thymocytes, whereas the functional role of p75LNGR is still unknown. The thymus of vertebrates undergoes age-related changes that in part depend on hormonal factors. In order to find out whether thymic epithelial cells are responsive to NGF during the whole lifespan of the rat, we studied NGF receptor expression in the thymus from birth to 2 years of age, using immunohistochemistry. Furthermore, to evaluate whether increased plasma levels of NGF affected the ageing process, either NGF or 4-methylcatechol (4MC), an inductor of NGF synthesis, was administered. Both TrkA and p75LNGR were expressed by a subpopulation of thymic epithelial cells during the whole age range studied and their expression peaked at around 3 months. TrkA was primarily found in subcortical and medullary epithelial cells, whereas p75LNGR was seen in a subpopulation of medullary cells. Cortical epithelial cells, neural crest-derived cells, other stromal cells and thymocytes were not immunoreactive for NGF receptors. Neither the administration of NGF nor the increased NGF plasma levels obtained after 4MC treatment seemed to affect the ageing of the thymus as assessed by morphological and immunohistochemical criteria, but this increase in NGF levels did produce a shift in the expression of p75LNGR from epithelial cells to ED1-positive macrophages in animals of 6 months and older. Present results indicate that the expression of p75LNGR and TrkA in the rat thymus undergoes age-dependent changes that parallel those of epithelial cells. NGF could therefore be important for thymus homeostasis, possibly acting on epithelial cells. Nevertheless, NGF did not seem to be able to prevent the involution of this organ, although it produced a switch in the expression of p75LNGR, the significance of which remains to be established.  相似文献   

9.
Thymic epithelial cells, which constitute a major component of the thymic microenvironment, provide a crucial signal for intrathymic T cell development and selection. Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. NGF is increasingly recognized as a potent immunomodulator, promoting “cross-talk” between various types of immune system cells. The present study clearly shows that NGF stimulates mouse thymic epithelial cell activities in vitro including cell proliferation, thymocyte adhesion to thymic epithelial cells, and the expression of cell adhesion molecules such as ICAM-1 and VCAM-1, and thymopoietic factors including IL-7, GM-CSF, SDF-1, TARC and TECK. Thus, our data are of considerable clinical importance showing that trophic NGF activity could be used to enhance the thymus regeneration and develop methods to improve host immunity when the immune function is depressed due to thymic involution.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in vivo. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high affinity VEGF receptors. VEGF plays an essential role in developmental angiogenesis and is important also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with VEGF inhibitors in a variety of malignancies are ongoing. Recently, a humanized anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the FDA as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.  相似文献   

11.
Thymic epithelium provides an essential cellular substrate for T cell development and selection. Gradual age-associated thymic atrophy leads to a reduction in functional thymic tissue and a decline in de novo T cell generation. Development of strategies tailored toward regeneration of thymic tissue provides an important possibility to improve immune function in elderly individuals and increase the capacity for immune recovery in patients having undergone bone marrow transfer following immunoablative therapies. In this study we show that restriction of the size of the functional thymic epithelial progenitor pool affects the number of mature thymic epithelial cells. Using an embryo fusion chimera-based approach, we demonstrate a reduction in the total number of both embryonic and adult thymic epithelium, which relates to the initial size of the progenitor cell pool. The inability of thymic epithelial progenitor cells to undergo sufficient compensatory proliferation to rescue the deficit in progenitor numbers suggests that in addition to extrinsic regulation of thymus growth by provision of growth factors, intrinsic factors such as a proliferative restriction of thymic epithelial progenitors and availability of progenitor cell niches may limit thymic epithelial recovery. Collectively, our data demonstrate an important level of regulation of thymic growth and recovery at the thymic epithelial progenitor level, providing an important consideration for developing methods targeted toward inducing thymic regeneration.  相似文献   

12.
Vascular endothelial growth factor (VEGF), a potent angiogenic mitogen, plays a crucial role in angiogenesis under various pathophysiological conditions. We have recently demonstrated that VEGF(165), one of the VEGF isoforms, binds connective tissue growth factor (CTGF) and that its angiogenic activity is inhibited in the VEGF(165).CTGF complex form (Inoki, I., Shiomi, T., Hashimoto, G., Enomoto, H., Nakamura, H., Makino, K., Ikeda, E., Takata, S., Kobayashi, K. and Okada, Y. (2002) FASEB J. 16, 219-221). In the present study, we further examined the susceptibility of the VEGF(165).CTGF complex to matrix metalloproteinases (MMP-1, -2, -3, -7, -9, and -13), ADAMTS4 (aggrecanase-1), and serine proteinases, and evaluated the recovery of the angiogenic activity of VEGF(165) after the treatment. Among the MMPs, MMP-1, -3, -7, and -13 processed CTGF of the complex into the major NH(2)- and COOH-terminal fragments, whereas VEGF(165) was completely resistant to the MMPs. On the other hand, elastase and plasmin cleaved both CTGF and VEGF(165) of the complex, but they were completely resistant to ADAMTS4. By digestion of the immobilized VEGF(165).CTGF complex with MMP-3 or MMP-7, both NH(2)- and COOH-terminal fragments of CTGF were dissociated and released from the complex into the liquid phase. The in vitro angiogenic activity of VEGF(165) blocked in the VEGF(165).CTGF complex was reactivated to original levels after CTGF digestion of the complex with MMP-1, -3, and -13. Recovery of angiogenic activity was further confirmed by in vivo angiogenesis assay using a Matrigel injection model in mice. These results demonstrate for the first time that CTGF is a substrate of MMPs and that the angiogenic activity of VEGF(165) suppressed by the complex formation with CTGF is recovered through the selective degradation of CTGF by MMPs. MMPs may play a novel role through CTGF degradation in VEGF-induced angiogenesis during embryonic development, tissue maintenance, and/or pathological processes of various diseases.  相似文献   

13.
Human leptin induces angiogenesis in vivo   总被引:1,自引:0,他引:1  
Leptin is an adipocyte-produced peptide, which plays a crucial role in the regulation of body weight. There is also evidence that leptin stimulates endothelial cell proliferation and the formation of capillary-like tubes in vitro. The disc angiogenesis system was used to measure the angiogenic effect of leptin in vivo. Discs containing 25, 50, 100 and 250 ng/ml of leptin were implanted subcutaneously in Wistar rats, removed after a growth period of 7 and 14 days, and compared with spontaneous growth controls and with positive controls containing equivalent doses of vascular endothelial growth factor (VEGF). Discs were examined morphologically for stroma and vessel development and by immunohistochemistry for quantitative evaluation of angiogenesis. The specificity of the angiogenic effect of leptin was tested by blocking leptin with a polyclonal anti-leptin antibody. Leptin induced a significant level of angiogenesis in a dose-dependent manner both at 7 and 14 days, with a peak at the dose of 100 ng/ml. The angiogenic activity of leptin was completely abolished by the anti-leptin neutralizing antibody. VEGF also induced significant dose-dependent angiogenesis at the same time points with a peak observed at a concentration of 100 ng/ml. The angiogenic response to leptin was significantly higher at 7 days compared with VEGF but not at the 14-day time point. In conclusion, leptin has a specific angiogenic effect in vivo, which is dose- and time-dependent in a concentration range of 25–250 ng/ml. This effect is equivalent to the angiogenic effect of VEGF but is evident earlier compared with VEGF.  相似文献   

14.
Differentiation of adipocytes is accompanied by secretion of molecules stimulating angiogenesis in vivo and endothelial cell growth and motility in vitro. We demonstrate that the angiogenic and motility-stimulating activities secreted by adipocytes are separable from the endothelial cell mitogenic activity by fractionation of adipocyte-conditioned medium. The major differentiation-dependent angiogenic molecule was purified and identified by GCMS as 1-butyryl-glycerol (monobutyrin). Monobutyrin levels increase at least 200-fold during adipocyte differentiation and represent a major fraction of the total angiogenic activity. Synthetic monobutyrin shows the same spectrum of biological activities as the adipocyte-derived factor: stimulation of angiogenesis in vivo and microvascular endothelial cell motility in vitro, with no effect on endothelial cell proliferation. Angiogenesis is stimulated at doses as low as 20 pg when tested in the chick chorioallantoic membrane assay. These results strongly suggest that monobutyrin is a key regulatory molecule in an angiogenic process linked to normal cellular and tissue development.  相似文献   

15.
The receptor activator of nuclear factor (NF)-B ligand (RANKL; also termed TRANCE/OPGL/ODF/TNFSF11), a new member of the tumor-necrosis factor (TNF) superfamily, was identified as a key cytokine involved in the differentiation of the immune system and the regulation of immunity as well as in bone metabolism. In particular, RANKL-deficient mice showed defects in the early differentiation of T lymphocytes, suggesting that RANKL is a novel regulator of early thymocyte development. Here, we describe the expression of RANKL during regeneration following acute involution induced by cyclophosphamide in the rat thymus. The present study demonstrates the presence and upregulated expression of the RANKL in thymic subcapsular, paraseptal, perivascular, and medullary epithelial cells during thymus regeneration. Our results suggest that the RANKL expressed in these thymic epithelial cells plays a role in the development of T cells during thymic regeneration.  相似文献   

16.
17.
18.
Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. Here, we report upon an examination of the expression of the TrkA neurotrophin receptor, the high affinity receptor for nerve growth factor, during regeneration following acute involution induced by cyclophosphamide in the rat thymus. Light and electron microscopic immunocytochemistry demonstrated enhanced expression of the TrkA receptor in the subcapsular, paraseptal, perivascular, and cortical epithelial cells during thymus regeneration. In addition, various morphological alterations, suggestive of a hyperfunctional and dynamic state, of the subcapsular, paraseptal, and perivascular epithelial cells were also observed. The presence of TrkA protein in extracts from the control and regenerating rat thymus was confirmed by western blot. Furthermore, RT-PCR analysis supported these results by demonstrating that thymic extracts contain TrkA mRNA at higher levels during thymus regeneration. Thus, our results suggest that the TrkA receptor located on the thymic subcapsular, paraseptal, perivascular, and cortical epithelial cells could play a role in the development of new T cells to replace T cells damaged during thymus regeneration.  相似文献   

19.
Angiogenesis is a key step in organ development and remodeling during embryogenesis or tissue regeneration. Some pathological events such as tumor growth or diabetic retinopathy also lead to angiogenesis formation. Several molecules have already been identified as promoting angiogenesis in vivo. Whether their bioactivity is mediated by other angiogenic growth factors or not is still unclear. We identified and purified recently a new angiogenic growth factor. Its unique specificity for vascular endothelial cells led us to provisionally name it vasculotropin (VAS). We describe the biochemical properties of VAS and its biological functions. Structural data showed that VAS is related to the SIS family. In vivo VAS was recognized as an inducer of angiogenesis and vascular permeability. In vitro, despite a moderate action on proliferation, VAS strongly stimulates the cell migration. The screening of the presence of cellular receptors and VAS production showed that the cells which bind VAS do not synthesize it, whereas the cells which synthesize VAS do not bind it. Thus, VAS seems to act through a paracrine pathway. We also present data suggesting that VAS has a lymphokine activity.  相似文献   

20.
Vascular endothelial growth factor (VEGF) was originally discovered as an endothelial-specific growth factor. While the predominant role of this growth factor in the formation of new blood vessels (angiogenesis) is unquestioned, recent observations indicate that VEGF also has direct effects on neurons and glial cells, and stimulates their growth, survival and axonal outgrowth. Because of these pleiotropic effects, VEGF has now been implicated in several neurological disorders both in the preterm infant (leukomalacia) and the adult (stroke, neurodegeneration, cerebral and spinal trauma, ischemic and diabetic neuropathy, nerve regeneration). A challenge for the future is to unravel to what extent the effect of VEGF in these disorders relates to its angiogenic activity or direct neurotrophic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号