首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mucidin similar to antimycin inhibits the electron flow to cytochrome c and the enzyme activities dependent on cytochrome c reduction in the cells of Paracoccus denitrificans, but it does not inhibit the electron flow to nitrate reductase and cytochrome o. Unlike antimycin mucidin does not permit a residual electron flow through the cytochrome bc1 region. In the presence of antimycin the electron flow to nitrate is lower than in using mucidin in contrast with a higher extent of cytochrome b reduction. This result is in contradiction to the participation of the constitutive cytochrome b as an electron donor in the nitrate reduction.  相似文献   

3.
1. An NADH-nitrate oxidoreductase (EC 1.6.6.1) of Chlorella has the unusual property of existing in cell-free extracts mainly in the form of an inactive precursor which can be activated by a variety of procedures. This enzyme is associated with a cytochrome of the b type.

2. The inhibitors, azide, cyanate, thiocyanate and nitrite, react rapidly with the enzyme, with kinetics which show that they are competitive with nitrate.

3. The inhibitors, cyanide and hydroxylamine, react slowly with the reduced form of the enzyme to give an inactive product which can slowly be reactivated in the presence of nitrate. There is at least a superficial similarity between the reactivation of the inhibited enzyme and the activation of the enzyme precursor in fresh extracts.

4. Mammalian cytochrome c, dichlorophenolindophenol and ferricyanide can substitute for nitrate as oxidants for NADH in the presence of the enzyme. This “diaphorase” reaction does not require activation, but is fully active in fresh extracts. It is not inhibited by cyanide, hydroxylamine, azide, cyanate, thiocyanate, or by the substrate, nitrate. Oxidized cytochrome c, on the other hand, inhibits the reduction of nitrate by NADH in the presence of the enzyme.

5. Pyridoxal phosphate inhibits both nitrate reductase and cytochrome c reductase to about the same extent.  相似文献   


4.
This study experimentally examined influences of environmental variables on the activities of key enzymes involved in carbon and nitrogen metabolism of the submersed marine angiosperm, Zostera marina L. Nitrate reductase activity in leaf tissue was correlated with both water-column nitrate concentrations and leaf sucrose levels. Under elevated nitrate, shoot nitrate reductase activity increased in both light and dark periods if carbohydrate reserves were available. When water-column nitrate was low, glutamine synthetase activity in leaf tissue increased with environmental ammonium. In contrast, glutamine synthetase activity in belowground tissues was statistically related to both nitrate and temperature. At the optimal growth temperature for this species (ca. 25 °C), increased water-column nitrate promoted an increase in glutamine synthetase activity of belowground tissues. As temperatures diverged from the optimum, this nitrate effect on glutamine synthetase was no longer evident. Activities of both sucrose synthase and sucrose-P synthase were directly correlated with temperature. Sucrose-P synthase activity also was correlated with salinity, and sucrose synthase activity was statistically related to tissue ammonium. Overall, the enzymatic responses that were observed indicate a tight coupling between carbon and nitrogen metabolism that is strongly influenced by prevailing environmental conditions, especially temperature, salinity, and environmental nutrient levels.  相似文献   

5.
We report the development of a homologous transformation system for Cephalosporium acremonium using the niaD gene of the nitrate assimilation (NA) pathway. Mutants in the NA pathway were selected on the basis of chlorate resistance by conventional means. Screening procedures were developed to differentiate between nitrate reductase apoprotein structural gene mutants (niaD) and molybdenum cofactor gene mutants (cnx) as wt. C. acremonium, unlike most filamentous fungi, fails to grow on minimal medium with hypoxanthine as a sole source of nitrogen. Phage clones carrying the niaD gene were isolated from a C. acremonium library constructed in λEMBL3 using the A. nidulans niaD gene as a heterologous probe. An 8.6-kb EcoRI fragment was subcloned into pUC18, and designated pSTA700. pSTA700 was able to transform stable niaD mutants to NA at a frequency of up to 40 transformants per μg DNA. Transformants were easily visible since the background growth was low and no abortives were observed. Gene replacements, single copy homologous integration and complex multiple integrations were observed. The niaD system was used to introduce unselected markers for hygromycin B resistance and benomyl resistance into C. acremonium by cotransformation.  相似文献   

6.
Study on chlorate-resistants mutants of Escherichia coli K12. IV. Isolation, purification and study of nitrate-reductase restored in vitro by complementation

By mixing the cell-free extracts of the two mutants chl A and chl B of Escherichia coli K12, previously freed from particle membranes, we achieved restoration of nitrate reductase activity. The activity is restored first in a soluble form, then in a particulate form. This mechanism is called “complementation”. In the soluble state, the purified enzyme reduces NO3 and ClO3, using reduced benzyl viologen or FMNH2 as electron donors. It is sensitive to KCN, NaN3, p-hydroxymercuribenzoate (1 mM) and N-ethylmaleimide (0.1 mM)

The soluble form is sensitive neither to phospholipase C, nor to 2-n-heptyl-4-hydroxyquinoline-N-oxide; it associates with phospholipids and cytochrome b1 to form particles in which nitrate reductase activity is no longer sensitive to ethyl N-maleimide and p-hydroxymercuribenzoate, but, conversely, becomes sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide.

These results clearly demonstrate that it is possible to study the mechanism of integration of the enzyme leading to active membranes particles without any previous solubilisation of the original material.  相似文献   


7.
Abstract Nitrate induced the expression of a membrane-bound nitrate reductase in the strict anaerobe Geobacter metallireducens . A fraction from a DEAE cellulose column which showed nitrate reductase activity contained polypeptides of M r, 18, 36 and 43 K and three c type cytochromes ( M r 28, 46 and 68 K). Western and Southern blot analysis revealed no homology between the nitrate reductase from G. metallireducens and the nitrate reductases from respiratory ( Escherichia coli ) and denitrifying bacteria ( Pseudomonas stutzeri, Pseudomonas aeruginosa ) which were shown to be related. These data, in addition to this organism's inability to use fumarate or formate, suggest that its nitrate reductase is novel.  相似文献   

8.
The cell wall of the sporangiophore of the fungus Phycomyces is modeled assuming the primary microstructural elements consist of stiff chitin microfibrils embedded in a Newtonian viscous matrix. The structural parameters of the model are estimated from scanning electron micrographs taken of the inside of the growth zone of the sporangiophore, published X-ray data and published transmission electron micrographs of the cell wall. The plastic extension rate normalized with respect to imposed crosshead speed is calculated from the model and compared to measured rates obtained from a tensile test. Reasonable agreement is observed for the most natural choice of the microstructural parameters employed in the model.  相似文献   

9.
In Escherichia coli, aerobiosis inhibits the synthesis of enzymes for anaerobic respiration (e.g., nitrate reductase and fumarate reductase) and for fermentation (e.g., formate-hydrogen lyase). Anaerobically, nitrate induces nitrate reductase synthesis and inhibits the formation of both fumarate reductase and formate-hydrogen lyase. Previous work has shown that narL+ is required for the effects of nitrate on synthesis of both nitrate reductase and fumarate reductase. Another gene, narK (whose function is unknown), has no observable effect on formation of these enzymes. We report here our studies on the role of nar genes in fumarate reductase and formate-hydrogen lyase gene expression. We observed that insertions in narX (also of unknown function) significantly relieved nitrate inhibition of fumarate reductase gene expression. This phenotype was distinct from that of narL insertions, which abolished this nitrate effect under certain growth conditions. In contrast, insertion mutations in narK and narGHJI (the structural genes for the nitrate reductase enzyme complex) significantly relieved nitrate inhibition of formate-hydrogen lyase gene expression. Insertions in narL had a lesser effect, and insertions in narX had no effect. We conclude that nitrate affects formate-hydrogen lyase synthesis by a pathway distinct from that for nitrate reductase and fumarate reductase.  相似文献   

10.
Preparation of a nitrate reductase lysate of Escherichia coli MC1061 to measure nitrate and nitrite in biologic fluids is described. To obtain the crude bacterial lysate containing nitrate reductase activity, E. coli MC1061 was subjected to 16-20 freeze-thawing cycles, from -70 to 60 degrees C, until nitrite reductase activity was < or = 25%. Nitrate reductase activity was detected mainly in the crude preparation. To validate the nitrate reduction procedure, standard nitrate solutions (1.6-100 microM) were incubated with the nitrate reductase preparation for 3 h at 37 degrees C, and nitrite was estimated by the Griess reaction in a microassay. Nitrate solutions were reduced to nitrite in a range of 60-70%. Importantly, no cofactors were necessary to perform nitrate reduction. The biological samples were first reduced with the nitrate reductase preparation. After centrifugation, samples were deproteinized with either methanol/ether or zinc sulfate and nitrite was quantified. The utility of the nitrate reductase preparation was assessed by nitrate+nitrite determination in serum of animals infected with the protozoan Entamoeba histolytica or the bacteria E. coli and in the supernatant of cultured lipopolysaccharide-stimulated RAW 264.7 mouse macrophages. Our results indicate that the nitrate reductase-containing lysate provides a convenient tool for the reduction of nitrate to determine nitrate+nitrite in biological fluids by spectrophotometric methods.  相似文献   

11.
Muhammad Ashraf  Aafia Iram 《Flora》2005,200(6):535-546
A greenhouse experiment was conducted to assess the effect of water stress on growth and metabolic changes in nodules and other plant parts of two leguminous species, Phaseolus vulgaris and Sesbania aculeata, with the major objective that nodules play a vital role in drought tolerance. Imposition of water deficit conditions for 45 days to 15-day-old plants of P. vulgaris and S. aculeata reduced shoot mass and nodule mass of both species, but the reduction was more pronounced in P. vulgaris than in S. aculeata. Nitrate reductase (NR) activity was reduced more in the leaves and nodules of P. vulgaris than in S. aculeata. Soluble proteins in the nodules of S. aculeata were more decreased as compared to that in P. vulgaris. Free amino acids increased in all parts of both species due to water deficit, but a higher increase was observed in leaf and nodules of P. vulgaris than in S. aculeata. Osmoprotectants such as proline and glycine betaine increased more in the nodules and other parts of S. aculeata under drought stress. In conclusion, S. aculeata (salt tolerant) showed a higher degree of drought tolerance than P. vulgaris (salt sensitive). Drought tolerance of S. aculeata was found to be associated with a smaller reduction in number and mass of root nodules, a high activity of nitrate reductase in leaves and nodules, high accumulation of free proline in roots and nodules, and high glycine betaine content in nodules.  相似文献   

12.
邓超  王友绍 《生态科学》2011,30(3):321-326
研究首次于珠江口沉积物中分离出多株好氧反硝化细菌,从中筛选出一株反硝化性能最强的菌株A14-1。综合其生理生化及分子生物学鉴定的结果确定此菌株为红球菌属Rhodococcus aetherivorar。此菌株可在48 h内将培养基中的硝酸盐含量从157.91mg·L-1降低至32.07mg·L-1,反硝化效率高达26.20 mg·L-1·h-1,且不会产生亚硝酸盐的明显积累。以细菌总基因组DNA为模板成功扩增出亚硝酸还原酶基因nirS,说明亚硝酸还原酶可能参与了此菌株的好氧反硝化过程,将亚硝酸盐进一步还原,从而不会造成水体亚硝酸盐的积累。菌株A14-1在珠江口多个站点均有分布,环境适应能力强,且不会对环境造成危害,因此有望应用于污水的生物脱氮处理中。  相似文献   

13.
Evidence is presented which suggests that the NAD(P)H-cytochrome c reductase component of nitrate reductase is the main site of action of the inactivating enzyme. When tested on the nitrate reductase (NADH) from the maize root and scutella, the NADH-cytochrome c reductase was inactivated at a greater rate than was the FADH2-nitrate reductase component. With the Neurospora nitrate reductase (NADPH) only the NADPH-cytochrome c reductase was inactivated. p-Chloromercuribenzoate at 50 muM, which gave almost complete inhibition of the NADH-cytochrome c reductase fraction of the maize nitrate reductase, had no marked effect on the action of the inactivating enzyme. A reversible inactivation of the maize nitrate reductase has been shown to occur during incubation with NAD(P)H. In contrast to the action of the inactivating enzyme, it is the FADH2-nitrate reductase alone which is inactivated. No inactivation of the Neurospora nitrate reductase was produced by NAD(P)H alone and also in the presence of FAD. The lack of effect of the inactivating enzyme and NAD(P)H on the FADH2-nitrate reductase of Neurospora suggests some differences in its structure or conformation from that of the maize enzyme. A low level of cyanide (0.4 mu M) markedly enhanced the action of NAD(P)H on the maize enzyme; Cyanide at a higher level (6 mu M) did give inactivation of the Neurospora nitrate reductase in the presence of NADPH and FAD. The maize nitrate reductase, when partially inactivated by NADH and cyanide, was not altered as a substrate for the inactivating enzyme. The maize root inactivating enzyme was also shown to inactivate the nitrate reductase (NADH) in the pea leaf. It had no effect on the nitrate reductase from either Pseudomonas denitrificans or Nitrobacter agilis.  相似文献   

14.
C Meyer  I Cherel  T Moureaux  J Hoarau  J Gabard  P Rouze 《Biochimie》1987,69(6-7):735-742
NADH: nitrate reductase (EC 1.6.6.1) was purified from Nicotiana plumbaginifolia leaves. As recently observed with nitrate reductase from other sources, this enzyme is able to reduce nitrate using reduced bromphenol blue (rBPB) as the electron donor. In contrast to the physiological NADH-dependent activity, the rBPB-dependent activity is stable in vitro. The latter activity is non-competitively inhibited by NADH. The monoclonal antibody ZM.96(9)25, which inhibits the NADH: nitrate reductase total activity as well as the NADH: cytochrome c reductase and reduced methyl viologen (rMV): nitrate reductase partial activities, has no inhibitory effect on the rBPB: nitrate reductase activity. Conversely, the monoclonal antibody NP.17-7(6) inhibits nitrate reduction with all three electron donors: NADH, MV or BPB. Among various nitrate reductase-deficient mutants, an apoprotein gene mutant (nia. E56) shows reduced terminal activities but a highly increased rBPB:nitrate reductase activity. rBPB:nitrate reductase thus appears to be a new terminal activity of higher plant nitrate reductase and involves specific sites which are not shared by the other activities.  相似文献   

15.
16.
Our microtiter plate assay is based on the enzymatic reduction of nitrate by dissimilatory nitrate reductase from Pseudomonas stutzeri [EC 1.7.99.4]. Exogenous redox mediators like methyl viologen, methylene blue, and cibachron blue were applied to reduce nitrate reductase. Concentrations of 0.02-0.9 mM nitrate can be detected with +/-6% standard deviation, by using a photometric Griess reaction for the formed nitrite. Nitrate reductase is stable in the pH range 6.5-9.0 and works in the temperature range 4-76 degrees C. The assay shows no interferences with salt content up to 1 M chloride or 11 mM chlorate, and serum albumin content up to 50 mg/ml. The time demand of our two-step procedure is 20 min/100 samples. Nitrate reductase could be conserved on site of the wells of microtiter plates for at least 6 months at room temperature. The nitrate assay was applied in environmental and consumer goods analysis, and for medical diagnostics in human plasma samples.  相似文献   

17.
Nitrogen assimilation and transport in carob plants   总被引:1,自引:0,他引:1  
Most of the nitrate reductase activity (80%;) in carob ( Ceratonia siliqua L. cv. Mulata) is localised in the roots. The nitrate concentration in the leaves is relatively low compared to that in the roots, suggesting that nitrate influx into the leaf may be a major factor limiting the levels of nitrate reductase in the shoot. Transport of nitrate from root to shoot appears limited by the entrance of nitrate into the xylem. In order to study this problem, we determined the nitrate concentrations and nitrate reductase activities along the roots of nitrate-grown plants, as well as the composition of the xylem sap and the nitrate levels in the leaves. Some of the the bypocotyl, in order to bypass the loading of nitrate into the xylem of the roots. The results show that the loading of nitrate into the xylem is a limiting step.
The cation and anion concentrations of nitrate- and ammonium-fed plants were similar, showing almost no production of organic anions. In both nitrate- and ammonium-fed plants, the transport of nitrogen from root to shoot was in the form of organic nitrogen compounds. The nitrate reductase activity in the roots was more than sufficient to explain all the efflux of OH into the root medium of nitrate-fed plants. In carob plants the K-shuttle may thus be operative to a limited extent only, corresponding to between 11 and 27%; of the nitrate taken up. Potassium seems to be the cation accompanying stored nitrate in the roots of carob seedlings, since they accumulate nearly stoichiometric amounts of K+ and NO3.  相似文献   

18.
19.
The effect of tungsten on the development of endogenous and nitrate-induced NADH- and FMNH2-linked nitrate reductase activities in primary leaves of 10-day-old soybean (Glycine max [L.] Merr.) seedlings was studied. The seedlings were grown with or without exogenous nitrate. High levels of endogenous nitrate reductase activities developed in leaves of seedlings grown without nitrate. However, no endogenous nitrite reductase activity was detected in such seedlings. The FMNH2-linked nitrate reductase activity was about 40% of NADH-linked activity. Tungsten had little or no effect on the development of endogenous NADH- and FMNH2-linked nitrate reductase activities, respectively. By contrast, in nitrate-grown seedlings, tungsten only inhibited the nitrate-induced portion of NADH-linked nitrate reductase activity, whereas the FMNH2-linked activity was inhibited completely. Tungsten had no effect on the development of nitrate-induced nitrite reductase activity. The complete inhibition of FMNH2-linked nitrate reductase activity by tungsten in nitrate-grown plants was apparently an artifact caused by the reduction of nitrite by nitrite reductase in the assay system. The results suggest that in soybean leaves either the endogenous nitrate reductase does not require molybdenum or the molybdenum present in the seed is preferentially utilized by the enzyme complex as compared to nitrate-induced nitrate reductase.  相似文献   

20.
1. Possible mechanisms regulating the activities of three enzymes involved in nitrate assimilation, nitrate reductase, nitrite reductase and glutamate dehydrogenase, were studied in radish cotyledons. 2. Nitrate-reductase and nitrite-reductase activities are low in nitrogen-deficient cotyledons, and are induced by their substrates. 3. Glutamate dehydrogenase is present regardless of the nitrogen status, and the enzyme can be increased only slightly by long-term growth on ammonia. 4. Although nitrate is the best inducer of nitrate reductase, lower levels of induction are also obtained with nitrite and ammonia. The experiments did not distinguish between direct or indirect induction by these two molecules. 5. Nitrite reductase is induced by nitrite and only indirectly by nitrate. 6. The induction of both nitrate reductase and nitrite reductase is prevented by the inhibitors actinomycin D, puromycin and cycloheximide, indicating a requirement for the synthesis of RNA and protein. 7. The decay of nitrate reductase, determined after inhibition of protein synthesis, is slower than the synthesis of the enzyme. Nitrite reductase is much more stable than nitrate reductase. 8. The synthesis of nitrate reductase is not repressed by ammonia, but is repressed by growth on a nitrite medium. 9. There is no inhibition of nitrate reductase, nitrite reductase or glutamate dehydrogenase by the normal end products of assimilation, but cyanate is a fairly specific inhibitor of nitrate reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号