首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rapid regulation of oxidative phosphorylation is crucial for mitochondrial adaptation to swift changes in fuels availability and energy demands. An intramitochondrial signaling pathway regulates cytochrome oxidase (COX), the terminal enzyme of the respiratory chain, through reversible phosphorylation. We find that PKA-mediated phosphorylation of a COX subunit dictates mammalian mitochondrial energy fluxes and identify the specific residue (S58) of COX subunit IV-1 (COXIV-1) that is involved in this mechanism of metabolic regulation. Using protein mutagenesis, molecular dynamics simulations, and induced fit docking, we show that mitochondrial energy metabolism regulation by phosphorylation of COXIV-1 is coupled with prevention of COX allosteric inhibition by ATP. This regulatory mechanism is essential for efficient oxidative metabolism and cell survival. We propose that S58 COXIV-1 phosphorylation has evolved as a metabolic switch that allows mammalian mitochondria to rapidly toggle between energy utilization and energy storage.  相似文献   

3.
Several aspects of energy metabolism (glucose utilization, lactate production,14CO2 production from labeled glucose, glutamate or pyruvate, oxygen consumption and contents of ATP and phosphocreatine) were measured in cerebellar granule cells (glutamatergic) in primary cultures and compared with corresponding data for cerebral cortical neurons (mainly GABA-ergic) and astrocytes. Cerebellar granule cells and astrocytes were metabolically more active than cerebral cortical neurons. Glutamate which is utilized as a major metabolic fuel as astrocytes and, to a lesser extent, in cerebral cortical neurons, was virtually not oxidized in cerebellar granule cells.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

4.
5.
6.
Cytochrome c (Cytc) and cytochrome c oxidase (COX) catalyze the terminal reaction of the mitochondrial electron transport chain (ETC), the reduction of oxygen to water. This irreversible step is highly regulated, as indicated by the presence of tissue-specific and developmentally expressed isoforms, allosteric regulation, and reversible phosphorylations, which are found in both Cytc and COX. The crucial role of the ETC in health and disease is obvious since it, together with ATP synthase, provides the vast majority of cellular energy, which drives all cellular processes. However, under conditions of stress, the ETC generates reactive oxygen species (ROS), which cause cell damage and trigger death processes. We here discuss current knowledge of the regulation of Cytc and COX with a focus on cell signaling pathways, including cAMP/protein kinase A and tyrosine kinase signaling. Based on the crystal structures we highlight all identified phosphorylation sites on Cytc and COX, and we present a new phosphorylation site, Ser126 on COX subunit II. We conclude with a model that links cell signaling with the phosphorylation state of Cytc and COX. This in turn regulates their enzymatic activities, the mitochondrial membrane potential, and the production of ATP and ROS. Our model is discussed through two distinct human pathologies, acute inflammation as seen in sepsis, where phosphorylation leads to strong COX inhibition followed by energy depletion, and ischemia/reperfusion injury, where hyperactive ETC complexes generate pathologically high mitochondrial membrane potentials, leading to excessive ROS production. Although operating at opposite poles of the ETC activity spectrum, both conditions can lead to cell death through energy deprivation or ROS-triggered apoptosis.  相似文献   

7.
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.  相似文献   

8.
9.
10.
The mammalian AMP-activated protein kinase is a heterotrimeric serine/threonine protein kinase with multiple isoforms for each subunit (alpha, beta, and gamma) and is activated under conditions of metabolic stress. It is widely expressed in many tissues, including the brain, although its expression pattern throughout the CNS is unknown. We show that brain mRNA levels for the alpha2 and beta2 subunits were increased between embryonic days 10 and 14, whereas expression of alpha1, beta1, and gamma1 subunits was consistent at all ages examined. Immunostaining revealed a mainly neuronal distribution of all isoforms. The alpha2 catalytic subunit was highly expressed in neurons and activated astrocytes, whereas the alpha1 catalytic subunit showed low expression in neuropil. The gamma1 noncatalytic subunit was highly expressed by neurons, but not by astrocytes. Expression of the beta1 and beta2 noncatalytic subunits varied, but some neurons, such as granule cells of olfactory bulb, did not express detectable levels of either beta isoform. Preferential nuclear localization of the alpha2, beta1, and gamma1 subunits suggests new functions of the AMP-activated protein kinase, and the different expression patterns and cellular localization between the two catalytic subunits alpha1 and alpha2 point to different physiological roles.  相似文献   

11.
A new mechanism on regulation of mitochondrial energy metabolism is proposed on the basis of reversible control of respiration by the intramitochondrial ATP/ADP ratio and slip of proton pumping (decreased H+/e- stoichiometry) in cytochrome c oxidase (COX) at high proton motive force delta p. cAMP-dependent phosphorylation of COX switches on and Ca2+-dependent dephosphorylation switches off the allosteric ATP-inhibition of COX (nucleotides bind to subunit IV). Control of respiration via phosphorylated COX by the ATP/ADP ratio keeps delta p (mainly delta psi(m)) low. Hormone induced Ca2+-dependent dephosphorylation results in loss of ATP-inhibition, increase of respiration and delta p with consequent slip in proton pumping. Slip in COX increases the free energy of reaction, resulting in increased rates of respiration, thermogenesis and ATP-synthesis. Increased delta psi(m) stimulates production of reactive oxygen species (ROS), mutations of mitochondrial DNA and accelerates aging. Slip of proton pumping without dephosphorylation and increase of delta p is found permanently in the liver-type isozyme of COX (subunit VIaL) and at high intramitochondrial ATP/ADP ratios in the heart-type isozyme (subunit VIaH). High substrate pressure (sigmoidal v/s kinetics), palmitate and 3,5-diiodothyronine (binding to subunit Va) increase also delta p, ROS production and slip but without dephosphorylation of COX.  相似文献   

12.
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).  相似文献   

13.
Chemokines are a family of proteins that chemoattract and activate cells by interacting with specific receptors on the surface of their targets. The chemokine stromal cell-derived factor 1, (SDF1), binds to the seven-transmembrane G protein-coupled CXCR4 receptor and acts to modulate cell migration, differentiation, and proliferation. CXCR4 and SDF1 are reported to be expressed in various tissues including brain. Here we show that SDF1 and CXCR4 are expressed in cultured cortical type I rat astrocytes, cortical neurons, and cerebellar granule cells. In cortical astrocytes, prolonged treatment with lipopolysaccharide induced an increase of SDF1 expression and a down-regulation of CXCR4, whereas treatment with phorbol esters did not affect SDF1 expression and down-modulated CXCR4 receptor expression. We also demonstrated the ability of human SDF1alpha (hSDF1alpha) to increase the intracellular calcium level in cultured astrocytes and cortical neurons, whereas in the same conditions, cerebellar granule cells did not modify their intracellular calcium concentration. Furthermore, in cortical astrocytes, the simultaneous treatment of hSDF1alpha with the HIV-1 capside glycoprotein gp120 inhibits the cyclic AMP formation induced by forskolin treatment.  相似文献   

14.
15.
Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration.  相似文献   

16.
Primary astrocyte cultures from hippocampus, cortex and cerebellum presented different extracellular pattern of adenine nucleotide hydrolysis. The ATP/ADP hydrolysis ratio was 8:1 for hippocampal and cortical astrocytes and 5:1 for cerebellar astrocytes. The AMP hydrolysis in cerebellar astrocytes was seven-fold higher than in cortical or hippocampal cells. No accumulation of extracellular adenosine in all structures studied was observed. Dipyridamol increased significantly inosine levels in the extracellular medium of hippocampal and cortical, but not in cerebellar astrocytes medium. A higher expression of ecto-5′-nucleotidase was identified by RT-PCR in cerebellum. The differences observed may indicate functional heterogeneity of nucleotides in the brain.  相似文献   

17.
Signaling pathways targeting mitochondria are poorly understood. We here examine phosphorylation by the cAMP-dependent pathway of subunits of cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain. Using anti-phospho antibodies, we show that cow liver COX subunit I is tyrosinephosphorylated in the presence of theophylline, a phosphodiesterase inhibitor that creates high cAMP levels, but not in its absence. The site of phosphorylation, identified by mass spectrometry, is tyrosine 304 of COX catalytic subunit I. Subunit I phosphorylation leads to a decrease of V(max) and an increase of K(m) for cytochrome c and shifts the reaction kinetics from hyperbolic to sigmoidal such that COX is fully or strongly inhibited up to 10 mum cytochrome c substrate concentrations, even in the presence of allosteric activator ADP. To assess our findings with the isolated enzyme in a physiological context, we tested the starvation signal glucagon on human HepG2 cells and cow liver tissue. Glucagon leads to COX inactivation, an effect also observed after incubation with adenylyl cyclase activator forskolin. Thus, the glucagon receptor/G-protein/cAMP pathway regulates COX activity. At therapeutic concentrations used for asthma relief, theophylline causes lung COX inhibition and decreases cellular ATP levels, suggesting a mechanism for its clinical action.  相似文献   

18.
19.
The mammalian ribonucleotide reductase consists of two nonidentical subunits, protein M1 and M2. M1 binds nucleoside triphosphate allosteric effectors, whereas M2 contains a tyrosine free radical essential for activity. The activity of ribonucleotide reductase increased 10-fold in extracts of mouse L cells 6 h after infection with pseudorabies virus. The new activity was not influenced by antibodies against subunit M1 of calf thymus ribonucleotide reductase, whereas the reductase activity in uninfected cells was completely neutralized. Furthermore, packed infected cells (but not mock-infected cells) showed an electron paramagnetic resonance spectrum of the tyrosine free radical of subunit M2 of the cellular ribonucleotide reductase. These data given conclusive evidence that on infection, herpesvirus induces a new or modified ribonucleotide reductase. The virus-induced enzyme showed the same sensitivity to inhibition by hydroxyurea as the cellular reductase. The allosteric regulation of the virus enzyme was completely different from the regulation of the cellular reductase. Thus, CDP reduction catalyzed by the virus enzyme showed no requirement for ATP as a positive effector, and no feedback inhibition was observed by dTTP or dATP. The virus reductase did not even bind to a dATP-Sepharose column which bound the cellular enzyme with high affinity.  相似文献   

20.
Kahlert S  Reiser G 《Cell calcium》2004,36(3-4):295-302
Cooperation between astrocytes and neurons is a unique interaction between two highly specialized cell types of the brain. Therefore, lack of nutrient supply during ischemia requires tight coordination of metabolism between astrocytes and neurons to keep the brain functions intact. To understand the impact of energy limitation on astrocytes, the functions of astrocytes have to be considered: (i) supplementation of neuronal cells, (ii) modulation of the extracellular milieu, mainly of the glutamate level, and (iii) elimination of reactive oxygen species (ROS). In cultured astrocytes and neurons inhibition of oxidative phosphorylation, using rotenone, was tested. Interestingly, this had only a negligible effect on Ca2+ homeostasis in astrocytes, even in combination with a severe glutamate stress. In contrast, in neurons glutamate in the presence of rotenone induced Ca2+ deregulation. Ca2+ homeostasis is very critical for cell survival. A massive and prolonged Ca2+ rise will lead to deregulation of many processes in such a way that the cells affected can hardly survive. Ca2+ homeostasis depends on the energy-consuming processes, which maintain the steep gradient between intracellular and extracellular Ca2+ concentration. Deprivation of oxygen and glucose during ischemia leads to a depletion of ATP in the brain, due to inhibited glycolytic and mitochondrial activity, whereas energy-consuming processes like ion pumps drain the ATP pools. On the other hand, specific mechanisms can protect brain structures against the massive insult of ischemia. Glycogen, stored in astrocytes, can maintain both neurons and astrocytes alive during short limitation of oxygen and glucose. Moreover, astrocytes can fuel ATP generation by providing lactate for neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号