首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzofuroxan reacts with the catalytic-site thiol group of actinidin (EC 3.4.22.14, the cysteine proteinase from Actinidia chinensis) to produce stoicheiometric amounts of the chromophoric reduction product, o-benzoquinone dioxime, and of a catalytically inactive derivative of actinidin that is devoid of thiol and that is assumed to contain, initially at least, the sulphenic acid of cysteine-25. A similar result applies also to papain (EC 3.4.22.2). The rate of o-benzoquinone dioxime formation is neither increased by inclusion of 2-mercaptoethanol or hydroxylamine in the reaction mixture nor decreased by changing the solvent from H2O to 2H2O. The change of solvent was shown to be without effect also on the rate of reaction of benzofuroxan with papain. These results suggest that the reactions of benzofuroxan with both actinidin and papain involve rate-determining attack of the catalytic-site thiol group to produce an intermediate adduct that then reacts rapidly with water to form enzyme sulphenic acid and o-benzoquinone dioxime. The pH-dependence of the second-order rate constant for the reaction of benzofuroxan with actinidin was determined in the pH range 4.3-10.2. In marked contrast with the analogous reaction of papain (reported by Shipton & Brocklehurst [(1977) Biochem. J. 167, 799-810] ) the pH-k profile for the actinidin reaction clearly contains a sigmoidal component with pKa 5.5, in which k increases with decreasing pH. These data together with the molecular pKa values for S-/ImH+ ion-pair formation and decomposition (3.0 and 9.6) suggest that the combined nucleophilic-electrophilic reactivity of the ion-pair of actinidin might be controlled by the state of ionization of another ionizing group, associated with the molecular pKa of 5.5. The pH-dependence of k for the reaction of actinidin with benzofuroxan at 25 degrees C at I 0.1 in aqueous buffers containing 6.7% (v/v) ethanol is probably adequately described by: k = k1/(1 + [H+]/KI + KII/[H+]) + k2/(1 + [H+]/KII + KIII/ [H+] + k3/(1 + [H+]/KIII) in which kI = 2.55 M -1 X s -1, k2 = 1.35 M -1, k3 = 0.93 M -1 X s -1, pKI = 3.0, pKII = 5.5 and pKIII = 9.6. By contrast, the analogous reaction of papain may be described by the same equation but with kI = 0, k2 = 2.2 M -1 X s -1, k3 = 1.3 M -1 X s -1, pKII = 3.6 and pKIII = 9.0.  相似文献   

2.
1. The influence on the reactivities of the catalytic sites of papain (EC 3.4.22.2) and actinidin (3.4.22.14) of providing for interactions involving the S1-S2 intersubsite regions of the enzymes was evaluated by using as a series of thiol-specific two-hydronic-state reactivity probes: n-propyl 2-pyridyl disulphide (I) (a 'featureless' probe), 2-(acetamido)ethyl 2'-pyridyl disulphide (II) (containing a P1-P2 amide bond), 2-(acetoxy)ethyl 2'-pyridyl disulphide (III) [the ester analogue of probe (II)] and 2-carboxyethyl 2'-pyridyl disulphide N-methylamide (IV) [the retroamide analogue of probe (II)]. Syntheses of compounds (I), (III) and (IV) are reported. 2. The reactivities of the two enzymes towards the four reactivity probes (I)-(IV) and also that of papain towards 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide (VII) (containing both a P1-P2 amide bond and an L-phenylalanyl side chain as an occupant for the S2 subsite), in up to four hydronic (previously called protonic) states, were evaluated by analysis of pH-dependent stopped-flow kinetic data (for the release of pyridine-2-thione) by using an eight-parameter rate equation [described in the Appendix: Brocklehurst & Brocklehurst (1988) Biochem. J. 256, 556-558] to provide pH-independent rate constants and macroscopic pKa values. The analysis reveals the various ways in which the two enzymes respond very differently to the binding of ligands in the S1-S2 intersubsite regions despite the virtually superimposable crystal structures in these regions of the molecules. 3. Particularly striking differences between the behaviour of papain and that of actinidin are that (a) only papain responds to the presence of a P1-P2 amide bond in the probe such that a rate maximum at pH 6-7 is produced in the pH-k profile in place of the rate minimum, (b) only in the papain reactions does the pKa value of the alkaline limb of the pH-k profile change from 9.5 to approx. 8.2 [the value characteristic of a pH-(kcat./Km) profile] when the probe contains a P1-P2 amide bond, (c) only papain reactivity is affected by two positively co-operative hydronic dissociations with pKI congruent to pKII congruent to 4 and (d) modulation of the reactivity of the common -S(-)-ImH+ catalytic-site ion-pair (Cys-25/His-159 in papain and Cys-25/His-162 in actinidin) by hydronic dissociation with pKa approx. 5 is more marked and occurs more generally in reactions of actinidin than is the case for papain reactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The characteristics of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2), two cysteine proteinases whose catalytic-site regions appear to superimpose to a degree that approaches atomic co-ordinate accuracy of both crystal structures, were evaluated by determining (a) the pH-dependence in acid media of the acylation process of the catalytic act (k+2/Ks) using N alpha-benzoyl-L-arginine p-nitroanilide (L-Bz-Arg-Nan) as substrate and (b) the sensitivity of the reactivity of the catalytic-site thiol group and its pH-dependence to structural change in small, thiol-specific, two-protonic-state reactivity probes (2,2'-dipyridyl disulphide and methyl 2-pyridyl disulphide) where enzyme-probe contacts should be restricted to areas close to the catalytic site. Distortion of the catalytic sites of the two enzymes at pH less than 4 was evaluated over time-scales appropriate for both stopped-flow reactivity probe kinetics (less than or equal to 1-2 s) and steady-state substrate catalysis kinetics (3-5 min) by using the 2,2'-dipyridyl disulphide monocation as a titrant for non-distorted catalytic sites. This permitted a lower pH limit to be defined for valid kinetic analysis of both types. The behaviour of the enzymes at pH less than 4 requires a kinetic model in which the apparently biomolecular reaction of enzyme with probe reagent is separated from the process leading to loss of conformational integrity by a potentially reversible step. The acylation of actinidin with L-Bz-Arg-Nan in acidic media occurs in two protonic states, one produced by raising the pH across pKa less than 4 which probably characterizes the formation of -S-/-ImH+ ion pair (pKa approx. 3) and the other, of higher reactivity, produced by raising the pH across pKa 5.5, which may characterize rearrangement of catalytic-site geometry. The pH-dependence of the acylation of papain by L-Bz-Arg-Nan is quite different and is not influenced by protonic dissociation with pKa values in the range 5-6. The earlier conclusion that the acylation of papain depends on two protonic dissociations each with pKa approx. 4 was confirmed. This argument is now more firmly based because titration with 2,2'-dipyridyl disulphide permits the loss of conformational integrity to be taken into account in the analysis of the kinetic data at very low pH. Methyl 2-pyridyl disulphide was synthesized by reaction of pyridine-2-thione with methyl methanethiolsulphonate and its pKa at I = 0.1 was determined by spectral analysis at 307 nm to be 2.8.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. The pH-dependences of the second-order rate constant (k) for the reactions of papain (EC 3.4.22.2) with 2-(acetamido)ethyl 2'-pyridyl disulphide and with ethyl 2-pyridyl disulphide and of k for the reaction of benzimidazol-2-ylmethanethiol (as a minimal model of cysteine proteinase catalytic sites) with the former disulphide were determined in aqueous buffers at 25 degrees C at I 0.1. 2. Of these three pH-k profiles only that for the reaction of papain with 2-(acetamido)ethyl 2'-pyridyl disulphide has a rate maximum at pH approx. 6; the others each have a rate minimum in this pH region and a rate maximum at pH 4, which is characteristic of reactions of papain with other 2-pyridyl disulphides that do not contain a P1-P2 amide bond in the non-pyridyl part of the molecule. 3. The marked change in the form of the pH-k profile consequent upon introduction of a P1-P2 amide bond into the probe molecule for the reaction with papain but not for that with the minimal catalytic-site model is interpreted in terms of the induction by binding of the probe in the S1-S2 intersubsite region of the enzyme of a transition-state geometry in which nucleophilic attack by the -S- component of the catalytic site is assisted by association of the imidazolium ion component with the leaving group. 4. The greater definition of the rate maximum in the pH-k profile for the reaction of papain with an analogous 2-pyridyl disulphide reactivity probe containing both a P1-P2 amide bond and a potential occupant for the S2 subsite [2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [Brocklehurst, Kowlessur, O'Driscoll, Patel, Quenby, Salih, Templeton, Thomas & Willenbrock (1987) Biochem. J. 244, 173-181]) suggests that a P2-S2 interaction substantially increases the population of transition states for the imidazolium ion-assisted reaction. 5. The overall kinetic solvent 2H-isotope effect at pL 6.0 was determined to be: for the reaction of papain with 2,2'-dipyridyl disulphide, 0.96 (i.e. no kinetic isotope effect), for its reaction with the probe containing only the P1-P2 amide bond, 0.75, for its reaction with the probe containing both the P1-P2 amide bond and the occupant for the S2 subsite, 0.61, and for kcat./Km for its catalysis of the hydrolysis of N-methoxycarbonylglycine 4-nitrophenyl ester, 0.67.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed.  相似文献   

6.
1. 2-(N'-Acetyl-D-phenylalanylamino)ethyl 2'-pyridyl disulphide (compound I) [m.p. 123-124 degrees C; [alpha]20D -7.1 degrees (c 0.042 in methanol)] was synthesized, and the results of a study of the pH-dependence of the second-order rate constant (k) for its reaction with the catalytic-site thiol group of papain (EC 3.4.22.2), together with existing kinetic data for the analogous reaction of the L-enantiomer (compound II), were used to evaluate the consequences for transition-state geometry of the difference in chirality at the P2 position of the probe molecule. 2. The kinetic data suggest that the D-enantiomer binds approx. 40-fold less tightly to papain than the L-enantiomer but that the binding-site--catalytic-site signalling that results in a (His-159)-Im(+)-H-assisted transition state occurs equally effectively in the interaction of the former probe as in that of the latter. This results in pH-k profiles for the reactions of both enantiomers each characterized by four macroscopic pKa values (3.7-3.9, 4.1-4.3, 7.9-8.3 and 9.4-9.5) in which k is maximal at pH approx. 6 where the -Im(+)-H-assisted transition state is most fully developed. 3. Model building indicates that both enantiomers can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the binding pocket of the S2 subsite with preservation of the three hydrogen-bonding interactions involving the substrate analogue reagent and (Asp-158) C = O, (Gly-66) C = O, and (Gly-66)-N-H of papain. Earlier predictions that binding of N-acyl-D-phenylalanine derivatives to papain would be prevented on steric grounds [Berger & Schechter (1970) Philos. Trans. R. Soc. London B 257, 249-264; Lowe & Yuthavong (1971) Biochem. J. 124, 107-115; Lowe (1976) Tetrahedron 32, 291-302] were based on assumed models that are not consistent with the X-ray-diffraction data for papain inhibited by alkylation of Cys-25 with N-benzyloxycarbonyl-Phe-Ala-chloromethane [Drenth, Kalk & Swen (1976) Biochemistry 15, 3731-3738]. 4. The possibility that the kinetic expression of P2-S2 stereospecificity may depend on the nature of the chemistry occurring in the catalytic site of papain is discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
1. The pH-dependence of the second-order rate constant (k) for the reaction of actinidin (EC 3.4.22.14) with 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide was determined and the contributions to k of various hydronic states were evaluated. 2. The data were used to assess the consequences for transition-state geometry of providing P2/S2 hydrophobic contacts in addition to hydrogen-bonding opportunities in the S1-S2 intersubsite region. 3. The P2/S2 contacts (a) substantially improve enzyme-ligand binding, (b) greatly enhance the contribution to reactivity of the hydronic state bounded by pKa 3 (the pKa characteristic of the formation of catalytic-site-S-/-ImH+ state) and pKa 5 (a relatively minor contributor in reactions that lack the P2/S2 contacts), such that the major rate optimum occurs at pH 4 instead of at pH 2.8-2.9, and (c) reveal the kinetic influence of a pKa approx. 6.3 not hitherto observed in reactions of actinidin. 4. Possibilities for the interplay of electrostatic effects and binding interactions in both actinidin and papain (EC 3.4.22.2) are discussed.  相似文献   

8.
A procedure for the isolation of cathepsin B (EC 3.4.22.1) and of cathepsin H from bovine spleen involving covalent chromatography by thiol-disulphide interchange and ion-exchange chromatography was devised. The stabilities of both cathepsins in alkaline media are markedly temperature-dependent, and reliable kinetic data can be obtained at pH values up to 8 by working at 25 degrees C with a continuous spectrophotometric assay. Both enzyme preparations contain only one type of thiol group as judged by reactivity characteristics towards 2,2'-dipyridyl disulphide at pH values up to 8; in each case this thiol group is essential for catalytic activity. Cathepsin H was characterized by kinetic analysis of the reactions of its thiol group with 2,2'-dipyridyl disulphide in the pH range approx. 2-8 and the analogous study on cathepsin B [Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] was extended to include reaction at pH values up to approx. 8. Cathepsin H, like the other cysteine proteinases, was shown to contain an interactive catalytic-site system in which the nucleophilic character of the sulphur atom is maintained in acidic media. The considerable differences in catalytic site characteristics detected by this two-protonic-state reactivity probe between cathepsin B, cathepsin H, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) are discussed. Reaction with 2,2'-dipyridyl disulphide in acidic media, which is known to provide a rapid spectrophotometric active centre titration for many cysteine proteinases, is applicable to cathepsin H. This is useful because other active-centre titrations have proved unsuitable in view of the relatively low reactivity of the thiol group in cathepsin H.  相似文献   

9.
1. The pH-dependences of the second-order rate constants (k) for the alkylation by chloroacetate of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) were determined over a wide range of pH at 25 degrees C at I 0.1. 2. The main feature of both pH-k profiles is a striking rate maximum at pH6 (characterizing parameters in both cases pKI approx. 3.5, pKII approx. 8.4 and pH-independent rate constant approximately kXH 2.5-3.0 M-1 . s-1). 3. The profile for the ficin reaction contains a plateau at high pH, with approximately kX 0.10 M-1 . s-1; if an analogous plateau exists in the papain reaction, approximately kX ix much lower, less than 0.02 M-1 . s-1. 4. Both enzymes appear to contain closely similar thiolate-imidazolium interactive systems at pH6, but differences in their behaviour in more-acidic media and in alkaline media suggest differences in interaction with the postulated carboxylate component of the putative catalytic triad.  相似文献   

10.
Chymopapain A was isolated from the dried latex of papaya (Carica papaya) by ion-exchange chromatography followed by covalent chromatography by thiol-disulphide interchange. The latter procedure was used to produce fully active enzyme containing one essential thiol group per molecule of protein, to establish that the chymopapain A molecule contains, in addition, one non-essential thiol group per molecule and to recalculate the literature value of epsilon 280 for the enzyme as 36 000 M-1 X cm -1. The Michaelis parameters for the hydrolysis of L-benzoylarginine p-nitroanilide and of benzyloxy-carbonyl-lysine nitrophenyl ester at 25 degrees C, and I 0.1 at several pH values catalysed by chymopapain A, papaya proteinase omega, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) were determined. Towards these substrates chymopapain A has kcat./km values similar to those of actinidin and of papaya proteinase omega and significantly lower than those of papain or ficin. The environment of the catalytic site of chymopapain A is markedly different from those of other cysteine proteinases studied to date, as evidenced by the pH-dependence of the second-order rate constant (k) for the reaction of the catalytic-site thiol group with 2,2'-dipyridyl disulphide. The striking bell-shaped component that is a characteristic feature of the reactions of S-/ImH+ (thiolate/imidazolium) ion-pair components of many cysteine-proteinase catalytic sites with the 2,2'-dipyridyl disulphide univalent cation is not present in the pH-k profile for the chymopapain A reaction. The result is consistent with the presence of an additional positive charge in, or near, the catalytic site that repels the cationic form of the probe reagent. Resonance Raman spectra were collected at pH values 2.5, 6.0 and 8.0 for each of the following dithioacyl derivatives of chymopapain A: N-benzoylglycine-, N-(Beta-phenylpropionl)glycine- and N-methoxycarbonylphenylalanylglycine-. The main conclusion of the spectral study is that in each case the acyl group binds as a single population known as conformer B in which the glycinic N atom is in close contact with the thiol S atom of the catalytic-site cysteine residue, as is the case also for papain and other cysteine proteinases studied. Thus the abnormal catalytic-site environment of chymopapain A detected by the reactivity-probe studies, which may have consequences for the acylation step of the catalytic act, does not perturb the conformation of the bound acyl group at the acyl-enzyme-intermediate stage of catalysis.  相似文献   

11.
1. The kinetics of the reactions of the catalytic-site thiol groups of actinidin (the cysteine proteinase from Actinidia chinensis), ficin (EC 3.4.22.3), papain (EC 3.4.22.2) and papaya peptidase A (the other monothiol cysteine proteinase component of Carica papaya) with 4,4'-dipyridyl disulphide (4-Py-S-S-4-Py) and with 5,5'-dithiobis-(2-nitrobenzoate) dianion (Nbs22-) were studied in the pH range approx. 6-10. These studies provided the pH-independent second-order rate constants (k) for the reactions of the two probe reagents with the catalytic-site thiolate anions each in the environment of a neutral histidine side chain where an active-centre carboxy group would be ionized. 2. The ratio R equal to kNbs22-/k4-Py-S-S-4-Py provides an index of the catalytic-site solvation properties of the four cysteine proteinases and varies markedly from one enzyme to another, being 0.80 for papaya peptidase A (0.86 for the model thiol, 2-mercaptoethanol), 29 for actinidin, 0.18 for ficin and 0.015 for papain. These differences appear to derive mainly from the response of the enzyme to the negative charge on Nbs22-. 3. Possible implications of these results for (a) mechanisms of cysteine proteinase catalysis and (b) the possibility of using series of functionally related enzymes in the study of mechanism are discussed.  相似文献   

12.
The second-order rate constants (k) for the reactions of 2,2'-dipyridyl disulphide (pKa2,45) with 2-mercaptoethanol (pKa9.6) and with benzimidazol-2-ylmethanethiol (pKa values 5.6 and 8.3) were determined at 25 degrees C at I 0.1 by stopped-flow spectral analysis over a wide range of pH. These were used to calculate the pH-independent second-order rate constants (k) for the reactions of neutral 2,2'-dipyridyl disulphide and of its monocation with the 2-mercaptoethanol thiolate anion (associated pKa9.6) and with the benzimidazol-2-ylmethanethiol zwitterion (associated pKa5.6). For both thiolate ions, the rate-enhancement factor (kmonocation/kneutral disulphide) is about 1.5x10(3). The dependence on pH in acidic media of k for the reaction of 2,2'-dipyridyl disulphide with actinidin, the thiol proteinase from Actinidia chinensis, was shown to differ from the forms of pH-dependence observed for the analogous reactions with papain (EC 3.4.22.2) and ficin (3.4.22.3). The reactivity of the 2,2'-dipyridyl disulphide dication and its apparent sensitivity to the presence and location of a positive charge in the attacking thiol are discussed.  相似文献   

13.
The effects of selection by a small molecule, when binding to a protein, of a particular conformation from an equilibrium stereopopulation on the characteristics of the pH-dependence of reaction with a reactivity probe or substrate were determined by analysis of an appropriate kinetic model. For reaction in one protonic state containing an equilibrium mixture of two conformational isomers, the pH-second-order rate constant (k) profile is of conventional sigmoidal form. The apparent pKa value is a composite of the pKa values of the two conformational states. The value of pKapp. for a given enzyme under given experimental conditions will always be the same (provided that the site-specificity assumed in the model is maintained) irrespective of whether only one conformation reacts or both react, with the same or with different rate constants. The experimentally determined pH-independent rate constant (kapp.) is an average of the reactivities of the two conformational states weighted in favour of the predominant form. The presence of an additional but unreactive conformational state also affects the value of kapp. The possibility that overlapping acid dissociations that affect the reactivity of the enzyme might provide pH-k profiles often indistinguishable in practice from simple sigmoidal dissociation curves and subject to variability in apparent pKa values was evaluated by a simulation study. If two reactive protonic states of the enzyme respond differently to changes in the structure of the substrate or site-specific reactivity probe, differences in apparent pKa values of up to approx. 1 unit can be exhibited without deviation from sigmoidal behaviour being reliably observed. Differences in apparent pKa values observed in some site-specific reactions of papain and their possible consequences for its catalytic mechanism are discussed.  相似文献   

14.
1.2,2'-Dipyridyl disulphide (2-Py-S-S-2-Py) and n-propyl 2-pyridyl disulphide (propyl-S-S-2-Py) were used as two-protonic-state reactivity probes to investigate the active centre of papain (EC 3.4.22.2).2. The existence of a striking rate optimum at pH approx. 4 in the reaction of papain not only with the symmetrical probe but also with the unsymmetrical probe is shown to constitute compelling evidence that the thiolate ion component of the cysteine-25-histidine-159 interactive system of papain possesses appreciable nucleophilic character. It is not a necessary requirement that the probe reagent should engage the imidazolium ion of histidine-159 in hydrogen-bonding for the sulphur atom of the interactive system to display nucleophilic character. The single proton-binding site of propyl-S-S-2-Py cannot simultaneously interrupt the active-centre ion pair and provide for rate enhancement as the pH is lowered towards 4. The possible implication of this for the mechanism of papain-catalysed hydrolysis is discussed. 3. The suspected difference in the active centres of papain and ficin (EC 3.4.22.3), which could be a lack in ficin of a carboxy group conformationally equivalent to that of aspartic acid-158 of papain is confirmed. The reactivity of the papain thiol group towards both probe reagents is controlled by two ionizations with pKa close to 4 that are positively co-operative. 4. In the reaction of papain with 2-Py-S-S-2-Py. the reactivity appears to be controlled also by an addition ionization with pKa approx. 5. Possible origins of this additional ionization are discussed. K. The spectral and ionization characteristics of propyl-S-S-2-Py are reported. 6. The reagent reacts rapidly with thiol groups at the sulphur atom distal from the pyridyl ring to provide, at pH values below 9, stoicheiometric release of 2-thiopyridone. This property, together with the ability of the reagent markedly to increase its electrophilicity consequent on protonation, suggests alkyl-2-pyridyl disulphides in general as valuable two-protonic-state reactivity probes with exceptional specificity for thiol groups.  相似文献   

15.
1. 4-(N-2-Aminoethyl2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole (compound I) was synthesized and evaluated as a fluorescent labelling reagent for thiol groups. 2. The design of compound (I) as one example of a general type of reporter group delivery reagent (2-pyridyl-S-S-X, where X contains an environmentally sensitive spectroscopic probe) is discussed. 3. The electronic absorption spectrum of compound (I) was determined over a wide range of pH and the spectral changes that accompany its reaction with low-molecular-weight thiols, e.g. L-cysteine, and with papain (EC 3.4.22.2) and bovine serum albumin are discussed. 4. A new value of epsilon343 for 2-thiopyridone (Py-2-SH) was determined as 8.08 X 10(3) +/- 0.08 X 10(3)M-1-cm-1. 5. Spectral analysis of the reactions of compound (I) with L-cysteine and with papain (in the pH range 3.5-8.0) showed that even under equimolar conditions the reaction (thiol-disulphide interchange to release Py-2-SH) is essentially stoicheimoetric and probably proceeds by specific attack at the sulphur atom distal from the pyridyl ring of compound (I). 6. The fluorescence-emission spectra of compound (I) and of the products of its reaction with papain and with ficin (EC 3.4.22.3) were determined. Compound (I) is highly fluorescent in aqueous solution. Excitation within the intense visible absorption band (lambda max. 481 nm, epsilon max. 2.52 X 10(4)M-1-cm-1) provides green fluorescence with an emission maximum at 540 nm. Both papain and ficin labelled by reaction with compound (I) are characterized by fluorescence-emission maxima (535 nm and 530 nm respectively) of even higher intensity. The fluorescence emission of the product of the reaction of papain with compound (I) was shown to be 25 times more intense than that of the product of the reaction of papain with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride). 7. The second-order rate constants (k2) for the reactions of compound (I) and of Nbd chloride with GSH, papain, albumin, ficin, 2-benzimidazolylmethanethiol and 2-benzimidazolylethanethiol were determined at 25.0 degrees C and various pH values. At pH4 the values of k2(compound I)/k2(Nbd chloride) are: GSH, 288; albumin, 36; papain 3 X 10(3); ficin, 3 X 10(4). 8. The pH-k2 profiles for the reactions of compound (I) and of Nbd chloride with the two 2-benzimidazolylalkanethiols were determined. Of the four profiles only that for the reaction of compound (I) with 2-benzimidazolylmethanethiol is characterized by a striking rate maximum in acidic media.  相似文献   

16.
The catalytic-site thiol groups of papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) were each labelled with the nitrobenzofurazan (Nbf) chromophore by reaction with 4-chloro-7-nitrobenzofurazan at pH 4.4. The electronic-absorption spectra of both labelled enzymes were determined in aqueous solution, in the pH ranges approx. 2-5 for S-Nbf-papain and approx. 3.3-8 for S-Nbf-actinidin, and for the latter also in 6 M-guanidinium chloride. The spectrum of S-Nbf-papain is characterized by lambda max. = 402 nm at pH 5 and by lambda max. = 422 nm at pH 2.18. The pH-dependent shift in lambda max. accompanies a pH-dependent change in A 430, the nature of which is consistent with its dependence on a single ionizing group with pKa 3.7. The spectrum of S-Nbf-actinidin is pH-independent in the pH range approx. 3.3-8 and is characterized by lambda max. = 413 nm. This absorption maximum shifts to 425 nm in 6M-guanidinium chloride. These results are discussed and related to those reported previously from studies on papain and actinidin with various reactivity probes. Despite the close similarity in the catalytic sites of papain and actinidin deduced from X-ray-diffraction studies, the considerable differences in their reactivity characteristics are mirrored by differences in their electric fields detected by the Nbf spectroscopic label. The microenvironment in the catalytic site of actinidin appears to favour the existence of ions significantly more than in the corresponding region in papain.  相似文献   

17.
The kinetics of the reactions of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) with the two-protonic-state reactivity probes 2,2'-dipyridyl disulphide, n-propyl 2-pyridyl disulphide and 4-(N-aminoethyl 2'-pyridyl disulphide)- 7-nitrobenzo-2-oxa-1,3-diazole (compound I) were studied over a wide range of pH. Differences between the reactivities of ficin and papain towards the cationic forms of the alkyl 2-pyridyl disulphide probes suggest that ficin contains a cationic site without exact analogue in papain, and the striking difference in the shapes of the pH-rate profiles for the reactions of the two enzymes with compound (1) suggests differences in the mobilities or dispositions of the active-centre histidine imidazole groups with respect to relevant hydrophobic binding areas. The evidence from reactivity-probe studies that the papain catalytic mechanism involves substantial repositioning of the active-centre imidazole group during the catalytic act does not apply also to ficin. If ficin contains an aspartic acid residue analogous to aspartic acid-158 in papain, the pKa of its carboxy group is probably significantly lower than the pKa of the analogous group in papain.  相似文献   

18.
1. The characteristics of benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) that relate to its application as a reactivity probe for the study of environments of thiol groups are discussed. 2. To establish a kinetic and mechanistic basis for its use as a probe, a kinetic study of its reaction with 2-mercaptoethanol was carried out. 3. This reaction appears to proceed by a rate-determining attack of the thiolate ion on one of the electrophilic centres of benzofuroxan (possibly C-6) to provide a low steady-state concentration of an intermediate adduct; rapid reaction of this adduct with a second molecule of thiol gives the disulphide and o-benzoquinone dioxime. 4. The effects of the different types of environment that proteins can provide on the kinetic characteristics of reactions of thiol groups with benzofuroxan are delineated. 5. Benzofuroxan was used as a thiolspecific reactivity probe to investigate the active centres of papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). The results support the concept that the active centres of all three enzymes either contain a nucleophilic thiolate ion whose formation is characterized by a pKa of 3-4 and whose reaction with an electrophile can be assisted by interaction of a site of high electron density in the electrophile with active-centre imidazolium ion of pKa 8-9, or can provide such ions by protonic redistribution in enzyme-reagent or enzyme-substrate complexes.  相似文献   

19.
The pKa of ~8.0 for the catalytic cysteine residue of thymidylate synthetase was determined from the pH dependence of inactivation by the sulfhydryl reagents methyl methanethiolsulfonate and 5,5′ dithiobis (2-nitrobenzoic acid). At low pH (5.8–6.8) a rate of reaction significantly greater than can be accounted for by the concentration of thiolate anion was observed. The observed pKa and reactivity for thymidylate synthetase are comparable to those reported for papain (Little, G. L. and Brocklehurst, K. (1972) Biochem. J. 128, 475–477) (1). On the basis of these observations we propose that the cysteines of thymidylate synthetase involved in covalent catalysis may be activated through interaction with a general base in the active site of the enzyme.  相似文献   

20.
1. Fully active ficin (EC 3.4.22.3) containing 1 mol of thiol with high reactivity towards 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) at pH4.5 per mol of protein was prepared from the dried latex of Ficus glabrata by covalent chromatography on a Sepharose-glutathione-2-pyridyl disulphide gel. 2. Ficin thus prepared is a mixture of ficins I-IV and ficin G, in which ficins II and III predominate. The various ficins exhibit similar reactivity characteristics towards 2-Py-S-S-2-Py. 3. Use of 2-Py-S-S-2-Py as a reactivity probe demonstrates (a) that in ficin, as in papain (EC 3.4.22.2), the active-centre thiol and imidazole groups interact to provide a nucleophilic state at pH values of approx. 6 additional to the uncomplicated thiolate ion that predominates at pH values over 9, and (b) a structural difference between ficin and papain that leads to a much higher rate of reaction of 2-Py-S-S-2-Py with ficin than with papain at pH values 3-4. This difference is suggested to include a lack in ficin of a carboxyl group conformationally equivalent to that of aspartic acid-158 in papain. 4. The high electrophilicity of the 2-Py-S-S-2PyH+ monocation allows directly the detection of the exposure of the buried thiol group of ficin at pH values below 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号