首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 86 毫秒
1.
小麦Mlo及NBS—LRR类抗病基因同源序列的分离与鉴定   总被引:4,自引:0,他引:4  
根据GenBank中公布的大麦白粉病抗性控制基因MlocDNA序列及一个来源于栽培一粒小麦(Triticum monococcumL.)的假定抗病基因序列分别设计引物,以携带小麦抗白粉病基因的近等基因系为材料进行RT-PCR筛选。结果获得两个表达基因的cDNA克隆。其中一个与大麦白粉病抗性控制基因Mlo的同源性达83%。另一个为非通读序列,含有两个可能的开放阅读框,分别包含抗病基因NBS保守结构域2和3以及与水稻抗稻瘟病基因Pib蛋白末端相似的13个LRR区域,推测该序列属于NBS-LRR类。白粉菌诱导前后,该片段RT-PCR扩增产物存在差异。表明该片段可能与小麦抗病性相关。利用“中国春”缺体-四体系,将该NBS-LRR类序列定位在小麦1D染色体上。  相似文献   

2.
小麦NBS-LRR类抗病基因同源序列的分离与鉴定   总被引:7,自引:0,他引:7  
根据已知植物抗病基因的保守区域设计引物,从抗锈病小麦品种西农88基因组DNA扩增出3条与植物抗病基因同源的序列,分别为WRGA1、WRGA2和WRGA14。这三条同源片段均含有典型的NBS-LRR类抗病基因所拥有的保守性结构域Kinase-2a、Kinase-3a和疏水结构域(HD).它们与部分已知NBS-LRR类抗病基因的氨基酸序列同源性为46.0%-9.9%,三个片段间在氨基酸水平上的同源性为80.7%-56.8%。Northern杂交表明WRGA1在小麦中受水杨酸正调控,属诱导型表达。  相似文献   

3.
利用抗病基因的保守结构设计引物,从抗叶锈病近等基因系材料TcLr24中扩增出一条703bp的条带RGAl,通过与GenBank比对,选取与RGAI高度同源的若干条带,在它们共有的保守序列位置设计引物,利用cDNA末端快速扩增(RACE):ffL术扩增抗病同源基因cDNA全长.扩增到3条全长cDNA,经BLASTp比较,这些序列都舍有NBS保守结构域和多个LRR结构域.与很多已知植物抗病基因的功能相应区域一致.对FRGA-1,、FRGA-2和FRGA-3实时定量PCR分析,表明这3个基因在小麦叶片中都是组成型表达.本研究在小麦材料TcLr24中得到3条抗病基因同源cDNA全长,为研究小麦抗病基因奠定了基础.  相似文献   

4.
水稻NBS-LRR类R基因同源序列   总被引:28,自引:0,他引:28  
根据多数抗病基因(R)编码蛋白质的核苷酸结合区(nucleotide binding site, NBS)和富含亮氨酸重复(leucine-rich repeat,LRR)保守区域特点,设计PCR特异扩增引物,从水稻中克隆了大小约为520 bpDNA片段23个.通过序列同源比较分析发现, 它们编码的蛋白质氨基酸序列包括有NBS-LRR类基因所具有的kinase-1a,kinase-2a, kinase-3a和保守的domain 2区域,它们属于R基因同源序列(R gene homologous sequence, 简称RS).聚类结果发现它们分为4类.遗传定位结果表明它们分布在1,3,4,7~11染色体上,其中10个RS位于已知R基因所在的染色体区间.用水稻抗白叶枯病基因Xa4的近等基因系和基因累加系对克隆的NBS-LRR同源序列进行RFLP分析,发现序列RS13可能来自Xa4基因家族.  相似文献   

5.
为了挖掘野生稻中的抗病资源,根据已克隆的植物抗病基因核苷酸结合位点序列中的保守结构域设计3对简并引物,从疣粒、药用、高秆、宽叶和斑点野生稻基因组DNA中分离出13条NBS类抗病基因类似物,其中11条具有连续的ORF,具有NBS类R基因的保守基元P-loop、kinas-2、kinas-3a和GLPL。在NCBI上进行同源性搜索发现,其中12条RGAs的核苷酸序列与水稻已知的NBS类R基因具有66%~94%的同源性,与其他植物已知R基因具有67%~84%的同源性;其对应的氨基酸序列与水稻已知的NBS类R基因具有43%~93%的同源性,与其他植物已知R基因具有37%~79%的同源性。另外1条的核苷酸序列与水稻假定的NBS类R基因具有76%的同源性,其氨基酸序列与水稻假定的NBS类R基因具有74%的同源性。根据序列分析结果设计6对不同基因特异性引物,并利用RT-PCR技术进行表达分析,结果表明,RN1BD5、RN1BD10、RN1GG2和RN1YY6均能表达,说明这些片段可能是功能性抗病基因的部分序列;而RN1KY9和RN1GG5没有表达,可能是假基因。  相似文献   

6.
两个紧密连锁的小麦苯丙氨酸解氨酶基因的分离与鉴定   总被引:1,自引:0,他引:1  
李和平  廖玉才 《遗传学报》2003,30(10):907-912
利用一个小麦苯丙氨酸解氨酶基因PCR片段为探针,从小麦核DNA基因库中筛选出一个阳性噬菌体克隆,该克隆含有两个高度同源、紧密连锁、转录方向相同的小麦苯丙氨酸解氨酶基因PAL1与PAL2,它们之间的核酸序列同源性。为93%,相距约7kb,利用PAL1特异片段进行Southern分析,表明该基因在小麦基因组中具有多个拷贝。Northern杂交表明,经秆锈菌接种诱导,苯丙氨酸解氨酶基因在一对小麦抗-感近等基因系中差异表达:抗病等基因系中国春-Sr11携带与接种菌无毒性基因P11相对应的抗病基因Sr11,在接种4d后开始诱导表达,8d后表达量更高;而缺少抗病基因的感病系中国春-sr11接种6d后才开始表达,8d后的表达量与抗病系中6d时相当。用秆锈菌诱导物和几丁质寡聚物处理小麦悬浮细胞,均可在2h内激活苯丙氨酸解氨酶基因表达,但真菌诱导物在早期的诱导活性显著高于几丁质寡聚物。从转录水平证实了小麦苯丙氨酸解氨酶基因在秆锈菌诱导的抗性反应中具有重要作用。  相似文献   

7.
根据已知物种NBS抗病类基因(RGAs)保守序列设计引物,从芒果品种“金煌”基因组DNA中分离得到了10条同源序列(pp-1~10,GenBnak登录号为HM446507~16)。DNA序列分析表明,这些RGAs在200~300bp区间存在较大变异,Pi值都在0.4以上。同源性分析表明这些序列的同源性差异范围从11.0%~98.4%,离散值范围为1.6~100.7, 10条RGAs可以分为两大类。蛋白序列分析表明,pp-1~10都具有开放读码框,编码的蛋白含有典型的NBS抗病类基因所拥有的P-loop和Kinase-2a结构域,通过同源进化分析可将其分为TIR-NBS-LRR和CC-NBS-LRR两类,与已知物种同源性分别为22%~60%。  相似文献   

8.
小麦NBS类抗病基因同源cDNA序列的克隆与特征分析   总被引:2,自引:0,他引:2  
根据已克隆植物抗病(R)基因NBS保守结构域设计简并引物,采用RT-PCR和cDNA末端快速扩增技术(RACE),在小麦抗叶锈病近等基因系材料TcLr19中进行抗病同源基因cDNA全长的扩增。获得了1个通读的NBS类抗病同源基因S11A11cDNA序列,该序列全长2923bp,编码878个氨基酸序列。生物信息学分析结果表明,该片段含有NB-ARC保守结构域和多个LRR结构域。聚类分析表明,S11A11编码的蛋白与小麦抗叶锈病基因Lr1编码的蛋白亲缘关系较近,而与Lr10亲缘关系较远。半定量RT-PCR分析表明,该基因在小麦叶片中为低丰度组成型表达。本研究在TcLr19小麦中成功获得了抗病基因同源序列,为最终克隆小麦抗叶锈病目的基因奠定了基础。  相似文献   

9.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBSLRR序列中的保守区域设计简并引物,利用RTPCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBSLRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

10.
水稻中一个NBS-LRR抗病同源基因家族的克隆和分析   总被引:8,自引:1,他引:7  
利用克隆的抗病基因同源序列RS13作为探针,从水稻IR64的BAC文库中筛选到4个阳性克隆,其中一个克隆14E19能够覆盖其余3个克隆。对14E19进行全序列测定和分析,获得了73kb的全长DNA序列,基因预测显示其上有4个编码NBS-LRR结构域的基因(NL),分别命名为NL-A,B,C和D。对具有相同基因组背景的IRBB56同一染色体位置上跨度更大的BAC克隆106P13进行分析,发现其上有10个NL同源拷贝,其中4个同14E19上的NL一样。搜索日本晴、93—11、广陆矮4号的序列,发现三者有类似的同源序列。但与已知的NBS-LRR抗病基因同源性较低,说明NL是一个至少由10个成员(分别命名为NL-A至J)组成的新基因家族。对NL家族进行RT-PCR和cDNA库筛选分析,发现NL-B基因能够在抗白叶枯病品系IRBB4中表达,暗示该基因参与了抗病反应。  相似文献   

11.
水稻中大麦Mlo和玉米Hm1抗病基因同源序列的分析和定位   总被引:4,自引:0,他引:4  
刘卫东  王石平 《遗传学报》2002,29(10):875-879
大麦抗病基因Mlo和玉米抗病基因Hm1编码的产物不具有绝大多数植物抗病基因产物所含有的保守结构域。这两个抗病基因的作用机理也不符合基因对基因学说。从水稻中分离克隆了Mlo基因的同源序列OsMlo-1和玉米Hm1基因的同源序列DFR-1。利用水稻分子标记遗传连锁图,将OsMlo-1定位于水稻第六染色体的两俱RZ667和RG424之间;Osmlo-1距离这两个分子标记分别为20.6和6.0cM(centi-Morgan)。将DFR-1定位于水稻第一染色体两个分子标记R2635和RG462之间;DFR-1距离这两个分子标记分别为11.3和23.9cM。参照已发表的水稻分子标记连锁图,发现OsMlo-1和DFR-1的染色体位点分别与两个报道的水稻抗稻瘟病数量性状位点(QTL)有较好的对应关系。结果提示,水稻中与大麦Mlo 和玉米Hml同源的基因可能也参于抗病反应的调控。  相似文献   

12.
M/o基因家族是植物重要的抗病基因。本文通过系统分析木薯基因组数据库,从中共鉴定出21个M/o成员,其中20个具有完整序列,1个只有部分序列。对其中20个具有完整序列的基因与其他物种的Mlo基因进行聚类关系分析,结果显示,可将木薯Mlo基因家族分为6类(I~VI),其中4类都包括有来自拟南芥的Mlo基因,第vI类只包括2个木薯Mlo基因,可能是木薯中特有的一类Mlo;6个木薯Mlo与已知的抗病Mlo基因分别聚在第1V和第V类,这6个基因可能是木薯基因组中具有抗病功能的Mlo。对所有的木薯Mlo蛋白进行结构分析发现,除了MeMl020外,其他蛋白均具有6~8个跨膜结构,其中3个蛋白具有N端信号肽。  相似文献   

13.
从大麦‘斯特林’幼叶总RNA中分离Mlo基因cDNA完整编码区,反向连接到植物双元载体(pBI-121.2)35S启动子下游,通过农杆菌介导的苗端转化法获得两种小麦基因型(‘烟优2801’和‘烟优361’)的转基因小麦。T0代405株中有55株PCR检测阳性,平均转化率达到13.58%,T0和T1基因组DNA Southern杂交可以证明大麦Mlo基因片段已整合到小麦基因组中并可传递到后代。两种基因型的转基因小麦T0和T1植株在温室及大田中均表现出对白粉病抗性的提高。农杆菌介导的苗端转化法可以简单、快速、高效地获得转基因株系;排除体细胞变异对转基因植株的影响;克服基因型对农杆菌转化的限制,是小麦遗传转化的一种实用方法。  相似文献   

14.
小麦中雄性不育同源序列的分离、鉴定及表达分析   总被引:10,自引:0,他引:10  
利用拟南芥中已克隆的雄性核不育基因MS2和水稻中假定雄性不育蛋白的保守区域,设计一对简并引物,并在太谷核不育小麦可育株及不育株花药中进行扩增,得到了一条134bp的片段。以该片段为基础,通过电子延伸得到一个长为1604bp的序列,该序列编码的氨基酸包含一段由200个氨基酸组成的雄性不育保守区。RT-PCR结果表明,该雄性不育同源序列只在小麦可育花药中表达,而在小麦败育花药、叶片和根中不表达,说明该雄性不育同源序列为花药发育特异基因。  相似文献   

15.
16.
17.
18.
利用RT-PCR方法以及RACE(rapid amplification of cDNA ends)策略,从小麦(Triticum aestivum L.) 幼苗叶片中克隆了编码磷酸丙糖转运器(TPT)的全长cDNA.序列分析结果表明,小麦TPT cDNA编码402个氨基酸的前体蛋白,其中信号肽含有78个氨基酸.成熟蛋白部分与玉米(Zea mays L.)TPT有很高的同源性(89%).推测小麦TPT成熟蛋白有8个跨膜区,形成双亲α-螺旋的跨膜结构.位于第7个跨膜区的Arg-274和Lys-275可能是底物结合位点.比较TPT基因在小麦幼苗的根、胚芽鞘、叶片和种子中的表达差异表明:TPT基因在叶片、胚芽鞘中均有表达,但在胚芽鞘中的表达量较低,在种子和根中未见有表达.由此看来,小麦TPT的基因可能只局限在绿色组织中表达.还就C3和C4植物TPT不同的底物特异性问题进行了讨论.  相似文献   

19.
利用RT_PCR方法以及RACE(rapidamplificationofcDNAends)策略 ,从小麦 (TriticumaestivumL .)幼苗叶片中克隆了编码磷酸丙糖转运器 (TPT)的全长cDNA。序列分析结果表明 ,小麦TPTcDNA编码 40 2个氨基酸的前体蛋白 ,其中信号肽含有 78个氨基酸。成熟蛋白部分与玉米 (ZeamaysL .)TPT有很高的同源性 (89% )。推测小麦TPT成熟蛋白有 8个跨膜区 ,形成双亲α_螺旋的跨膜结构。位于第 7个跨膜区的Arg_2 74和Lys_2 75可能是底物结合位点。比较TPT基因在小麦幼苗的根、胚芽鞘、叶片和种子中的表达差异表明 :TPT基因在叶片、胚芽鞘中均有表达 ,但在胚芽鞘中的表达量较低 ,在种子和根中未见有表达。由此看来 ,小麦TPT的基因可能只局限在绿色组织中表达。还就C3 和C4植物TPT不同的底物特异性问题进行了讨论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号