首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PsiB protein of plasmid R6-5 inhibits the induction of the SOS pathway. The F sex factor also carries a psiB gene homologous to that of R6-5. Yet, it fails to inhibit SOS induction. In order to solve this difference, we characterized the psiB genes of R6-5 and F. We found that (i) the sequences of the two psiB genes share extensive homology the predicted amino acid sequences of the two proteins differing by 5 residues, (ii) the expression of R6-5 psiB is 4 times higher than F psiB gene, (iii) in plasmid R6-5, a Tn10 transposon upstream from the psiB gene enhances psiB expression. Hence, the F sex factor may be unable to prevent SOS induction for two non-exclusive reasons: (i) F PsiB protein, being slightly different from R6-5, may be less active, (ii) the level of synthesis of F PsiB protein may be insufficient to prevent SOS induction.  相似文献   

3.
PsiB, an anti-SOS protein, shown previously to prevent activation of RecA protein, was purified from the crude extract of PsiB overproducing cells. PsiB is probably a tetrameric protein, whose subunit has a sequence-deduced molecular mass of 15741 daltons. Using an immuno-assay with anti-PsiB antibodies, we have monitored PsiB cell concentrations produced by F and R6-5 plasmids: the latter type produces a detectable level of PsiB protein while the former does not. The discrepancy can be assigned to a Tn10 out-going promoter located upstream of psiB. When we inserted a Tn10 promoter upstream of F psiB, the F PsiB protein concentration reached the level of R6-5 PsiB. We describe here the physiological role that PsiB protein may have in the cell and how it causes an anti-SOS function. We observed that PsiB protein was transiently expressed by a wild-type F sex factor during its transmission to an Escherichia coli K-12 recipient. In an F+ x F- cross, PsiB concentration increased at least 10-fold in F- recipient bacteria after 90 minutes and declined thereafter; the psiB gene may be repressed when F plasmid replicates vegetatively. PsiB protein may be induced zygotically so as to protect F single-stranded DNA transferred upon conjugation. PsiB protein, when overproduced, may interfere with RecA protein at chromosomal single-stranded DNA sites generated by discontinuous DNA replication, thus causing an SOS inhibitory phenotype.  相似文献   

4.
Summary Previous studies have shown that transformation of Escherichia coli by plasmid DNA modified in vitro by carcinogens leads to RecA-dependant recombination between homologous plasmid and chromosomal DNA sequences. The mechanism of this recombination has now been studied using recombination-deficient mutants, and the influence of induction of the SOS response on the level of recombination investigated. Plasmid pNO1523, containing the str + operon (Sms), has been modified in vitro by either irradiation with UV light, or by reaction with (±) trans-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) and used to transform streptomycin-resistant hosts. The formation of Ampr transformants which also carry streptomycin resistance was used as a measure of the level of recombination between plasmid and chromosomal DNA. Transformation of recB and recC mutants produced no change in the level of recombination while in the recF mutant a significant decrease was observed compared to the wild type host. Thermal induction of the SOS response in tif-1 and tif-1 umuC mutants followed by transformation led to a four-fold increase in recombination in both cases. The results suggest that the streptomycin-resistant transformants arise exclusively via a recombinational pathway which is largely dependant on the recF gene product, and that this pathway is influenced by induction of the SOS response. These results are discussed in terms of the mechanism of this recombination.  相似文献   

5.
Exonuclease V (ExoV), an enzyme involved in the RecBCD pathway of recombination, was inhibited in cells induced for SOS functions. In vitro experiments showed that an ExoV inhibitor (Exi) induced after SOS induction was responsible for the inhibition of ExoV. Unlike other SOS functions, Exi protein was induced even inlexA(Ind) mutants. Phage Mud(ampr,lac) was fused to the promoter of theexi gene in alexA(Ind) strain, and in these fusion strains-galactosidase was inducible five- to six-fold after DNA damage. The Exi protein, in addition to the inhibition of ATP-dependent DNase activity of ExoV, appeared to repress the synthesis of polypeptide subunits of ExoV as well. Further, Exi protein appeared to be an inducible repressor of a number of other genes in SOS-induced cells.  相似文献   

6.
Summary The ccd operon of plasmid F encodes two genes, ccdA and ccdB, which contribute to the high stability of the plasmid by post-segregational killing of plasmid-free bacteria. The CcdB protein is lethal to bacteria and the CcdA protein is an antagonist of this lethal action. A 520 by fragment containing the terminal part of the ccdA gene and the entire ccdB gene of plasmid F was cloned downstream of the tac promoter. Although the CcdB protein was expressed from this fragment, no killing of host bacteria was observed. We found that the absence of killing was due to the presence of a small polypeptide, CcdA41, composed of the 41 C-terminal residues of the CcdA protein. This polypeptide has retained the ability to regulate negatively the lethal activity of the CcdB protein.  相似文献   

7.
The process of SOS mutagenesis in Escherichia coli requires (i) the replisome enzymes, (ii) RecA protein, and (iii) the formation of the UmuD'C protein complex which appears to help the replisome to resume DNA synthesis across a lesion. We found that the UmuD'C complex is an antagonist of RecA-mediated recombination. Homologous recombination in an Hfr x F- cross decreased as a function of the UmuD'C cell concentration; this effect was challenged by increasing RecA concentration. Recombination of a u.v.-damaged F-lac with the lac gene of an F- recipient was reduced by increasing the UmuD'C concentration while lac mutagenesis increased, showing an inverse relationship between recombination and SOS mutagenesis. We explain our data with the following model. The kinetics of appearance of the UmuD'C complex after DNA damage is slow, reaching a maximum after an hour. Within that period, excision and recombinational repair have had time to occur. When the UmuD'C concentration relative to the number of residual RecA filaments, not resolved by recombinational repair, becomes high enough, UmuD'C proteins provide a processive factor for the replisome to help replication bypass and repel the standing RecA filament. Thus, at a high enough concentration, the UmuD'C complex will switch repair from recombination to SOS mutagenesis.  相似文献   

8.
ABSTRACT

The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes.  相似文献   

9.
Summary Plasmid single-stranded DNA-binding protein genes complement the E. coli ssb-1 mutation, and partially restore capacity for DNA synthesis, DNA repair (direct role as well as role in SOS induction) and general recombination. Plasmid mutants derepressed for fertility derived from R1, R64 and R222 show a higher level of complementation compared to the parental repressed plasmids. Derepressed mutants of R222 synthesize more RNA which hybridizes with the ssb gene of the F factor than does the original R222 plasmid. This indicates that plasmid ssb genes are regulated coordinately with fertility genes.  相似文献   

10.
The replacement of Escherichia coli recA gene (recAEc) with the Pseudomonas aeruginosa recAPa gene in Escherichia coli cells results in constitutive hyper-recombination (high frequency of recombination exchanges per unit length of DNA) in the absence of constitutive SOS response. To understand the biochemical basis of this unusual in vivo phenotype, we compared in vitro the recombination properties of RecAPa protein with those of RecAEc protein. Consistent with hyper-recombination activity, RecAPa protein appeared to be more proficient both in joint molecule formation, producing extensive DNA networks in strand exchange reaction, and in competition with single-stranded DNA binding (SSB) protein for single-stranded DNA (ssDNA) binding sites. The RecAPa protein showed in vitro a normal ability for cleavage of the E. coli LexA repressor (a basic step in SOS regulon derepression) both in the absence and in the presence (i.e. even under suboptimal conditions for RecAEc protein) of SSB protein. However, unlike other hyper-recombinogenic proteins, such as RecA441 and RecA730, RecAPa protein displaced insufficient SSB protein from ssDNA at low magnesium concentration to induce the SOS response constitutively. In searching for particular characteristics of RecAPa in comparison with RecAEc, RecA441 and RecA803 proteins, RecAPa showed unusually high abilities: to be resistant to the displacement by SSB protein from poly(dT); to stabilize a ternary complex RecA::ATP::ssDNA to high salt concentrations; and to be much more rapid in both the nucleation of double-stranded DNA (dsDNA) and the steady-state rate of dsDNA-dependent ATP hydrolysis at pH 7.5. We hypothesized that the high affinity of RecAPa protein for ssDNA, and especially dsDNA, is the factor that directs the ternary complex to bind secondary DNA to initiate additional acts of recombination instead of to bind LexA repressor to induce constitutive SOS response.  相似文献   

11.
The Bacillus subtilis recH342 strain, which decreases interspecies recombination without significantly affecting the frequency of transformation with homogamic DNA, carried a point mutation in the putative recX (yfhG) gene, and the mutation was renamed as recX342. We show that RecX (264 residues long), which shares partial identity with the Proteobacterial RecX (<180 residues), is a genuine recombination protein, and its primary function is to modulate the SOS response and to facilitate RecA-mediated recombinational repair and genetic recombination. RecX-YFP formed discrete foci on the nucleoid, which were coincident in time with RecF, in response to DNA damage, and on the poles and/or the nucleoid upon stochastic induction of programmed natural competence. When DNA was damaged, the RecX foci co-localized with RecA threads that persisted for a longer time in the recX context. The absence of RecX severely impaired natural transformation both with plasmid and chromosomal DNA. We show that RecX suppresses the negative effect exerted by RecA during plasmid transformation, prevents RecA mis-sensing of single-stranded DNA tracts, and modulates DNA strand exchange. RecX, by modulating the “length or packing” of a RecA filament, facilitates the initiation of recombination and increases recombination across species.  相似文献   

12.
Summary UV irradiation of competent cells of Escherichia coli K12 produced an increase in the efficiency of transformation with plasmid DNA. This phenomenon has been called IPTE (increase in plasmid transformation efficiency) and is dependent on the activated state of the RecA protein. IPTE is independent of the lexA, recB recC, and recF genes. It is not related to the size or the replicon type of the plasmid. Furthermore, it is also induced in cells which have been previously treated with other SOS system-inducing agents such as bleomycin, mitomycin C, or nalidixic acid. IPTE is therefore similar to other repair (SOS) functions inducible by DNA damage since all of them are dependent upon activation of the RecA protein. IPTE differs from other SOS functions in the absence of a direct control by the LexA repressor.  相似文献   

13.
Summary We describe the first example of a recombination-specific protein induced during the development of competence for transformation in Streptococcus sanguis. Elaborated in response to stimulation by competence-protein, the 51,000 Molecular Weight (MW) polypeptide is one of at least 10 new polypeptides transiently induced during the competence phase. Biochemical and genetic analyses of the parental, cipA+ (competence specific inducible polypeptide A), and mutant, cipA, strains have shown that the 51,000 MW polypeptide has two roles: its low level constitutive synthesis is required for repair of damage to DNA due to UV light and methylmethane sulfonate; its induced synthesis (3–6x104 copies/cell) during the competence phase is essential for promoting recombination between donor single-stranded DNA and the recipient chromosome. Also, ccc plasmid donor DNA transformation, which occurs as a decreasing probability of the increasing donor plasmid MW, requires the inducible function specified by the 51,000 MW polypeptide. The MW independent low level transformation with ccc plasmids, the inheritance of plasmids by conjugation, and the stable maintenance of plasmids introduced by transformation and conjugation, respectively, are independent of the function specified by the 51,000 MW polypeptide.  相似文献   

14.
We have identified a new class of DNA gyrase mutants of Salmonella typhimurium that show chronic derepression of the SOS regulon. Thus, these mutants mimic the response of wild-type cells to gyrase inhibitors of the quinolone family. SOS induction by conditional lethal mutations gyrA208 or gyrB652, like that mediated by quinolones, is completely dependent on the function of the recB gene product. Introduction of recA or recB null mutations into these strains exacerbates their temperature-sensitive phenotype and prevents growth at the otherwise permissive temperature of 37°C. Selection of suppressors that concomitantly restore growth at 37°C and SOS induction in a recB? background yielded mutations that relieve the RecB requirement for homologous recombination; namely, sbcB mutations as well as mutations at a new locus that was named sbcE. Such mutations also restore SOS induction in quinolone-treated gyr+recB? strains. These findings indicate that Rec functions are needed for growth of the gyrase mutants at 37°C and suggest that recombinational repair intermediates constitute the SOS-inducing signal in the mutants as well as in quinolone-treated wild-type bacteria. Unlike quinolones, however, the gyr mutations described in this study do not cause detectable accumulation of ‘cleavable’ gyrase–DNA complexes in plasmid or chromosomal DNA. Yet gyrA208 (the only allele tested) was found to trigger RecB-mediated reckless degradation of chromosomal DNA in recA? cells at restrictive temperatures. Indirect evidence suggests that double-stranded DNA ends, entry sites for the RecBCD enzyme, are generated in the gyr mutants by the breakage of DNA-replication forks. We discuss how this could occur and how recombinational rescue of collapsed replication forks could account for cell survival (and SOS induction) in the gyr mutants as well as in quinolone-treated bacteria.  相似文献   

15.
16.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

17.
Indirect prophage induction is produced by transfer to recipients of u.v.-damaged F plasmid (95 kb). We tested whether the SOS signal can be produced by miniF, a 9.3 kb restriction fragment, coding for the replication and segregation functions of plasmid F. We used λminiF, a hybrid phage-plasmid. u.v.-irradiated λminiF induced prophages φ80 or λ and sfiA, a chromosomal SOS gene, in more than 50% of the infected cells. The maximal inducing dose produced about 0.5 pyrimidine dimers per kb and left 1% of λminiF survivors. Thus, the SOS signal produced by u.v.-damaged λminiF was almost as potent as that resulting from direct u.v.-irradiation of the lysogens. The u.v.-damaged vector λ, devoid of miniF, failed to promote SOS induction. In contrast, efficient induction was observed when u.v.-damaged λminiF infected a λ immune host, in which replication and expression of the phage genome were repressed. When replication and expression of the miniF genome was repressed by Hfr incompatibility, SOS induction was largely prevented. All these facts indicate that, in the hybrid λ-miniF, it is the u.v.-damaged miniF that generates an SOS signal.To locate on the miniF genome the loci that are involved in the production of the SOS signal, we isolated deletions spanning all the miniF restriction fragments. We characterized six mutant phenotypes (Par+, Rep?, Fid?, Par-2, Par-1 and SOS?) related to four functions; partition, copy number, replication and SOS induction. A locus, we call lynA, 800bp long, located by deletion mapping between the two origins of replication oriP and oriS is required for the production of an inducing signal.We postulate that indirect SOS induction by u.v.-damaged miniF results from the disturbance of the lynA function that may be involved in the co-segregation of F plasmid with the host chromosome.  相似文献   

18.
Summary We have developed a procedure for determining the rates of mitotic recombination of an interrupted duplication created by integration of transforming plasmid sequences at the benA, beta-tubulin, locus of Aspergillus nidulans. Transformation of a strain carrying a benomyl-resistant benA allele with plasmid AIpGM4, which carries the wild-type benA allele and the pyr4 (orotidine-5-phosphate decarboxylase) gene of Neurospora crassa, creates an interrupted duplication with plasmid sequences flanked by two benA alleles, one wild type and one benomyl resdistant. Such transformants will not grow in the presence of high levels of benomyl. Mitotic recombination causes the loss of the wild-type benA allele or conversion of the wild-type to the mutant allele resulting in nuclei carrying only the benomylresistant allele. Conidia containing such nuclei can be selected on media with high benomyl allowing easy quantitation of mitotic recombination. We found that the rate of recombination giving rise to benomyl-resistant conidia was 4.6×10-4. Reciprocal recombination leading to benomyl-resistant conidia lacking plasmid sequences occurred at a rate of 2.0×10-4 and gene conversion leading to benomylresistant conidia occurred at a rate of 2.6×10-4. We selected for reciprocal recombination leading to loss of pyr4 sequences on 5-fluoro-orotic acid and used this selection for two-step gene replacement of a mutant benA allele with the wild-type allele.  相似文献   

19.
Xer site-specific recombination is required for the stable inheritance of multicopy plasmids and the normal segregation of the bacterial chromosome in Escherichia coli.Two related recombinases and two accessory proteins are essential for Xer-mediated recombination at cer, a recombination site in the plasmid ColE1 The accessory proteins, ArgR and PepA, function in ensuring that the Xer recombination reaction acts exclusively intramolecularly, converting plasmid dimers into monomers and not vice versa. PepA is an amino-exopeptidase, but its molecular role in the Xer recombination mechanism is unclear. Here we show that a mutation directed at the presumptive active site of PepA creates a protein with no detectable peptidase activity in vitro or in vivo, but which still functions normality in Xer site-specific recombination at cer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号