首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A-/- murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A-/- oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A-/- oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A-/- oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A-/- mice.  相似文献   

2.
Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser323 being the highest affinity binding and is highly homologous to the Ser216 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser323 increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser323 phosphorylation is maintained into mitosis, but phosphorylation of Ser321 disrupts 14-3-3 binding to Ser323, mimicking the effect of inhibiting Ser323 phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser321 appears to have a role in stabilizing 14-3-3 binding to Ser323, and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser323. Ser321 is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser321 acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser323 and enhancing the dephosphorylation of Ser323 to block 14-3-3 binding to this site.  相似文献   

3.
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1Ser-259 by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.  相似文献   

4.
Cyclic nucleotide phosphodiesterase 3A (PDE3) regulates cAMP-mediated signaling in the heart, and PDE3 inhibitors augment contractility in patients with heart failure. Studies in mice showed that PDE3A, not PDE3B, is the subfamily responsible for these inotropic effects and that murine PDE3A1 associates with sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2), phospholamban (PLB), and AKAP18 in a multiprotein signalosome in human sarcoplasmic reticulum (SR). Immunohistochemical staining demonstrated that PDE3A co-localizes in Z-bands of human cardiac myocytes with desmin, SERCA2, PLB, and AKAP18. In human SR fractions, cAMP increased PLB phosphorylation and SERCA2 activity; this was potentiated by PDE3 inhibition but not by PDE4 inhibition. During gel filtration chromatography of solubilized SR membranes, PDE3 activity was recovered in distinct high molecular weight (HMW) and low molecular weight (LMW) peaks. HMW peaks contained PDE3A1 and PDE3A2, whereas LMW peaks contained PDE3A1, PDE3A2, and PDE3A3. Western blotting showed that endogenous HMW PDE3A1 was the principal PKA-phosphorylated isoform. Phosphorylation of endogenous PDE3A by rPKAc increased cAMP-hydrolytic activity, correlated with shift of PDE3A from LMW to HMW peaks, and increased co-immunoprecipitation of SERCA2, cav3, PKA regulatory subunit (PKARII), PP2A, and AKAP18 with PDE3A. In experiments with recombinant proteins, phosphorylation of recombinant human PDE3A isoforms by recombinant PKA catalytic subunit increased co-immunoprecipitation with rSERCA2 and rat rAKAP18 (recombinant AKAP18). Deletion of the recombinant human PDE3A1/PDE3A2 N terminus blocked interactions with recombinant SERCA2. Serine-to-alanine substitutions identified Ser-292/Ser-293, a site unique to human PDE3A1, as the principal site regulating its interaction with SERCA2. These results indicate that phosphorylation of human PDE3A1 at a PKA site in its unique N-terminal extension promotes its incorporation into SERCA2/AKAP18 signalosomes, where it regulates a discrete cAMP pool that controls contractility by modulating phosphorylation-dependent protein-protein interactions, PLB phosphorylation, and SERCA2 activity.  相似文献   

5.
cGMP-inhibited cAMP phosphodiesterase 3A (PDE3A) is expressed in mouse oocytes, and its function is indispensable for meiotic maturation as demonstrated by genetic ablation. Moreover, PDE3 activity is required for insulin/insulin-like growth factor-1 stimulation of Xenopus oocyte meiotic resumption. Here, we investigated the cAMP-dependent protein kinase B (PKB)/Akt regulation of PDE3A and its impact on oocyte maturation. Cell-free incubation of recombinant mouse PDE3A with PKB/Akt or cAMP-dependent protein kinase A catalytic subunits leads to phosphorylation of the PDE3A protein. Coexpression of PDE3A with constitutively activated PKB/Akt (Myr-Akt) increases PDE activity as well as its phosphorylation state. Injection of pde3a mRNA potentiates insulin-dependent maturation of Xenopus oocytes and rescues the phenotype of pde3(-/-) mouse oocytes. This effect is greatly decreased by mutation of any of the PDE3A serines 290-292 to alanine in both Xenopus and mouse. Microinjection of myr-Akt in mouse oocytes causes in vitro meiotic maturation and this effect requires PDE3A. Collectively, these data indicate that activation of PDE3A by PKB/Akt-mediated phosphorylation plays a role in the control of PDE3A activity in mammalian oocytes.  相似文献   

6.
Recent reports show that protein kinase A (PKA), but not exchange protein activated by cAMP (EPAC), acts in a cell autonomous manner to constitutively reduce the angiogenic sprouting capacity of murine and human endothelial cells. Specificity in the cellular actions of individual cAMP-effectors can be achieved when a cyclic nucleotide phosphodiesterase (PDE) enzyme acts locally to control the “pool” of cAMP that activates the cAMP-effector. Here, we examined whether PDEs coordinate the actions of PKA during endothelial cell sprouting. Inhibiting each of the cAMP-hydrolyzing PDEs expressed in human endothelial cells revealed that phosphodiesterase 3 (PDE3) inhibition with cilostamide reduced angiogenic sprouting in vitro, while inhibitors of PDE2 and PDE4 family enzymes had no such effect. Identifying a critical role for PDE3B in the anti-angiogenic effects of cilostamide, silencing this PDE3 variant, but not PDE3A, markedly impaired sprouting. Importantly, using both in vitro and ex vivo models of angiogenesis, we show the hypo-sprouting phenotype induced by PDE3 inhibition or PDE3B silencing was reversed by PKA inhibition. Examination of the individual cellular events required for sprouting revealed that PDE3B and PKA each regulated angiogenic sprouting by controlling the invasive capacity of endothelial cells, more specifically, by regulating podosome rosette biogenesis and matrix degradation. In support of the idea that PDE3B acts to inhibit angiogenic sprouting by limiting PKA-mediated reductions in active cdc42, the effects of PDE3B and/or PKA on angiogenic sprouting were negated in cells with reduced cdc42 expression or activity. Since PDE3B and PKA were co-localized in a perinuclear region in human ECs, could be co-immunoprecipitated from lysates of these cells, and silencing PDE3B activated the perinuclear pool of PKA in these cells, we conclude that PDE3B-mediated hydrolysis of cAMP acts to limit the anti-angiogenic potential of PKA in ECs.  相似文献   

7.
The tumor suppressor gene Chk2 encodes a serine/threonine kinase that signals DNA damage to cell cycle checkpoints. In response to ionizing radiation, Chk2 is phosphorylated on threonine 68 (T68) by ataxia-telangiectasia mutated (ATM) protein leading to its activation. We have previously shown that polo-like kinase 3 (Plk3), a protein involved in DNA damage checkpoint and M-phase functions, interacts with and phosphorylates Chk2. When Chk2 was immunoprecipitated from Daudi cells (Plk3-deficient), it had weak kinase activity towards Cdc25C compared with Chk2 derived from T47D cells (Plk3-expressing cells). This activity was restored by addition of recombinant Plk3 in a dose-dependent manner. Plk3 phosphorylates Chk2 at two residues, serine 62 (S62) and serine 73 (S73) in vitro, and this phosphorylation facilitates subsequent phosphorylation of Chk2 on T68 by ATM in response to DNA damage. When the Chk2 mutant construct GFP-Chk2 S73A (serine 73 mutated to alanine) is transfected into cells, it no longer associates with a large complex in vivo, and manifests a significant reduction in kinase activity. It is also inefficiently activated by ATM by phosphorylation at T68 and, in turn, is unable to phosphorylate the Cdc25C peptide 200-256, which contains the inhibitory S216 target phosphorylation residue. As a consequence, tyrosine 15 (Y15) on Cdc2 remains hypophosphorylated, and there is a loss of the G2/M checkpoint. These data describe a functional role for Plk3 in a pathway linking ATM, Plk3, Chk2, Cdc25C and Cdc2 in cellular response to DNA damage.  相似文献   

8.
We describe efforts to improve the pharmacokinetic profile of the aminopyridopyrazinone class of PDE5 inhibitors. These efforts led to the discovery of 3-[(trans-4-hydroxycyclohexyl)amino]-7-(6-methoxypyridin-3-yl)-1-(2-propoxyethyl)pyrido[3,4-b]pyrazin-2(1H)-one, a potent and selective inhibitor of PDE5 with an excellent PK profile.  相似文献   

9.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

10.
(R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7 , a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (?)-(S)- 7 were prepared to investigate the stereoselectivity of (R,S)- 7 . Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (?)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (?)-(S)- 7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)- 7 isomer displayed 100-fold higher affinity than the (?)-(S)- 7 isomer. Biochemical study indicated that (+)-(R)- 7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (?)-(S)- 7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (?)-(S)-[125I] 7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I] 7 , displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (?)-(S)- 7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd > 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)- 7 , an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

11.

Background

Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-β. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-β receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge.

Methods

AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling.

Results

Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1.

Conclusion

A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge.  相似文献   

12.
We investigated the regulation of cardiac cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels by protein kinase C (PKC) in Xenopus oocytes injected with cRNA encoding the cardiac (exon 5-) CFTR Cl- channel isoform. Membrane currents were recorded using a two-electrode voltage clamp technique. Activators of PKC or a cAMP cocktail elicited robust time-independent Cl- currents in cardiac CFTR-injected oocytes, but not in control water-injected oocytes. The effects of costimulation of both pathways were additive; however, maximum protein kinase A (PKA) activation occluded further activation by PKC. In oocytes expressing either the cardiac (exon 5-) or epithelial (exon 5+) CFTR isoform, Cl- currents activated by PKA were sustained, whereas PKC-activated currents were transient, with initial activation followed by slow current decay in the continued presence of phorbol esters, the latter effect likely due to down-regulation of endogenous PKC activity. The specific PKA inhibitor, adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS), and various protein phosphatase inhibitors were used to determine whether the stimulatory effects of PKC are dependent upon the PKA phosphorylation state of cardiac CFTR channels. Intraoocyte injection of 1,2-bis(2-aminophenoxy)ethane-N,N, N,N-tetraacetic acid (BAPTA) or pretreatment of oocytes with BAPTA-acetoxymethyl-ester (BAPTA-AM) nearly completely prevented dephosphorylation of CFTR currents activated by cAMP, an effect consistent with inhibition of protein phosphatase 2C (PP2C) by chelation of intracellular Mg2+. PKC-induced stimulation of CFTR channels was prevented by inhibition of basal endogenous PKA activity, and phorbol esters failed to stimulate CFTR channels trapped into either the partially PKA phosphorylated (P1) or the fully PKA phosphorylated (P1P2) channel states. Site-directed mutagenesis of serines (S686 and S790) within two consensus PKC phosphorylation sites on the cardiac CFTR regulatory domain attentuated, but did not eliminate, the stimulatory effects of phorbol esters on mutant CFTR channels. The effects of PKC on cardiac CFTR Cl- channels are consistent with a simple model in which PKC phosphorylation of the R domain facilitates PKA-induced transitions from dephosphorylated (D) to partially (P1) phosphorylated and fully (P1P2) phosphorylated channel states.  相似文献   

13.
14.
Guo Y  Li J  Hagström E  Ny T 《PloS one》2011,6(9):e24774
Plasmin has been proposed to be an important mediator during inflammation/infection. In this study, by using mice lacking genes for plasminogen, tissue-type plasminogen activator (tPA), and urokinase-type PA (uPA), we have investigated the functional roles of active plasmin in infection and sepsis. Two models were used: an infection model by intravenous injection of 1×107 CFU of S. aureus, and a sepsis model by intravenous injection of 1.6×108 CFU of S. aureus. We found that in the infection model, wild-type (WT) mice showed significantly higher survival rates than plasminogen-deficient (plg-/-) mice. However, in the sepsis model, plg-/- or tPA-/-/uPA-/- mice showed the highest survival rate whereas WT and tPA+/-/uPA+/- mice showed the lowest survival rate, and plg+/-, tPA-/-, and uPA-/- mice had an intermediate survival rate. These results indicate that the levels of active plasmin are critical in determining the survival rate in the sepsis, partly through high levels of inflammatory cytokines and enhanced STAT3 activation. We conclude that plasmin is beneficial in infection but promotes the production of inflammatory cytokines in sepsis that may cause tissue destruction, diminished neutrophil function, and an impaired capacity to kill bacteria which eventually causes death of these mice.  相似文献   

15.
Cyclic AMP (cAMP)-dependent protein kinase (PKA) and ribosomal S6 kinase 1 (RSK1) share several cellular proteins as substrates. However, to date no other similarities between the two kinases or interactions between them have been reported. Here, we describe novel interactions between subunits of PKA and RSK1 that are dependent upon the activation state of RSK1 and determine its subcellular distribution and biological actions. Inactive RSK1 interacts with the type I regulatory subunit (RI) of PKA. Conversely, active RSK1 interacts with the catalytic subunit of PKA (PKAc). Binding of RSK1 to RI decreases the interactions between RI and PKAc, while the binding of active RSK1 to PKAc increases interactions between PKAc and RI and decreases the ability of cAMP to stimulate PKA. The RSK1/PKA subunit interactions ensure the colocalization of RSK1 with A-kinase PKA anchoring proteins (AKAPs). Disruption of the interactions between PKA and AKAPs decreases the nuclear accumulation of active RSK1 and, thus, increases its cytosolic content. This subcellular redistribution of active RSK1 is manifested by increased phosphorylation of its cytosolic substrates tuberous sclerosis complex 2 and BAD by epidermal growth factor along with decreased cellular apoptosis.  相似文献   

16.
In mammalian oocytes, meiosis arrests at prophase I. Meiotic resumption requires activation of Maturation-Promoting Factor (MPF), comprised of a catalytic Cyclin-dependent kinase-1 (Cdk1) and a regulatory subunit cyclin B, and results in germinal vesicle breakdown (GVBD). Cyclic AMP (cAMP)-mediated Protein Kinase A (PKA) activity sustains prophase arrest by inhibiting Cdk1. However, the link between PKA activity and MPF inhibition remains unclear. Cdc25 phosphatases can activate Cdks by removing inhibitory phosphates from Cdks. Thus one method for sustaining prophase arrest could be inhibition of the activity of the Cdc25 protein required for MPF activation. Indeed, studies in Xenopus identify Cdc25C as a target of PKA activity in meiosis. However, in mice, studies suggest that Cdc25B is the phosphatase essential for GVBD and, therefore, the likely target of PKA activity. To assess these questions, we targeted a potential PKA substrate, a highly conserved serine 321 residue of Cdc25B and evaluated the effect on oocyte maturation. A Cdc25B-Ser321Ala point mutant mRNA induces GVBD when injected into prophase-arrested oocytes more rapidly than wild type mRNA. Using fluorescently-tagged proteins we also determined that the mutant protein enters the nucleus more rapidly than its wildtype counterpart. These data suggest that phosphorylation of the Ser321 residue plays a key role in the negative regulation and localization of Cdc25B during prophase arrest. PKA also phosphorylates a wildtype Cdc25B protein but not a Ser321Ala mutant protein in vitro. Mutation of Ser321 in Cdc25B also affects its association with a sequestering protein, 14-3-3. Our studies suggest that Cdc25B is a direct target of PKA in prophase-arrested oocytes and that Cdc25B phosphorylation results in its inhibition and sequestration by the 14-3-3 protein.  相似文献   

17.
It has been known for over a decade that inhibition of protein phosphatase 1 (PP1) activity prevents entry into M phase, but the relevant substrate has not been identified. We report here that PP1 is required for dephosphorylation of the Cdc2-directed phosphatase Cdc25 at Ser287 (of Xenopus Cdc25; Ser216 of human Cdc25C), a site that suppresses Cdc25 during interphase. Moreover, PP1 recognizes Cdc25 directly by interacting with a PP1-binding motif in the Cdc25 N-terminus. We have also found that 14-3-3 binding to phospho-Ser287 protects Cdc25 from premature dephosphorylation. Upon entry into M phase, 14-3-3 removal from Cdc25 precedes Ser287 dephosphorylation, suggesting the existence of a phosphatase- independent pathway for 14-3-3 removal from Cdc25. We show here that this dissociation of 14-3-3 from Cdc25 requires the activity of the cyclin-dependent kinase Cdk2, providing a molecular explanation for the previously reported requirement for Cdk2 in promoting mitotic entry. Collectively, our data clarify several steps important for Cdc25 activation and provide new insight into the role of PP1 in Cdc2 activation and mitotic entry.  相似文献   

18.
Incubation of cultured bovine vascular smooth muscle cells (VSMC) with forskolin increased cAMP as measured by an increase in cAMP-dependent protein kinase (PKA) activation (PKA ratio). Forskolin also produced a concentration- and time-dependent increase in activity (3–5-fold within 15 min) of a PDE4 (cAMP-specific cyclic nucleotide phosphodiesterase). The increase in PDE4 activity was not affected by cycloheximide and thus not likely due to increased synthesis of the enzyme. Activation, which was preserved during partial purification of the enzyme by chromatography on Sephacryl S-200 and MonoQ, was most likely due to a covalent modification. Incubation of cell homogenates with the catalytic subunit of PKA (PKAc) induced a ∼5-fold activation of PDE4 with a time course similar to that in intact cells after forskolin addition. The forskolin-mediated activation was reversed during incubation of homogenates at room temperature for two hours. Addition of PKAc resulted in rapid reactivation of PDE4. These data are consistent with the hypothesis that rapid, reversible activation of PDE4 in cultured VSMC is mediated by PKA.  相似文献   

19.
Polo-like kinase 1 (Plk1) is becoming an increasingly attractive target for cancer management. Plk1 has been shown to be over-expressed in a variety of cancers; however its role in skin cancers is not well-understood. We recently demonstrated that Plk1 is over-expressed in human melanoma and gene-knockdown as well as chemical-inhibition of Plk1 resulted in a significant decrease in melanoma cell viability and growth without affecting the growth of the normal human epidermal melanocytes (NHEMs). Further, the observed anti-proliferative response of Plk1 was found to be accompanied with a significant G2/M cell cycle arrest, mitotic catastrophe and induction of apoptosis in melanoma cells. In this study, we determined the expression profile of Plk1 in non-melanoma skin cancers viz. basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Our data demonstrated that like melanoma, Plk1 is significantly over-expressed in BCC and SCC samples. Further, we also found that compared to normal human epidermal keratinocytes (NHEKs), Plk1 was over-expressed at both the protein and mRNA levels in squamous A253 and A431 cells. In addition, a similar protein expression pattern was found for the downstream targets of Plk1, viz. Cdk1, Cyclin B1 and Cdc25C. We believe that the expression pattern of Plk1 in the various skin cancers, the insusceptibility of normal keratinocytes, to Plk1 inhibition and the easy accessibility for topical applications lends the skin as an attractive tissue for Plk1 based cancer chemoprevention and chemotherapeutic applications.  相似文献   

20.
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号