共查询到20条相似文献,搜索用时 0 毫秒
1.
Indirect effects in interactions occur when a species influences a third species by modifying the behaviour of a second one. It has been suggested that indirect effects of crab spiders (Thomisidae) on pollinator behaviour can cascade down the food web and negatively affect plant fitness. However, it is poorly understood how different pollinator groups react to crab spiders and, thus, when a reduction in plant fitness is likely to occur. Using continuous video surveillance, we recorded the behaviour of pollinators on two flower species and the pollinators’ responses to three crab spider treatments: inflorescences (1) with a pinned dried spider, (2) with a spider model made of paper, and (3) without spiders (control). We found that pollinators avoided inflorescences with dried spiders only on one plant species (Anthemis tinctoria). Pollinators showed no significant avoidance of paper spiders. Honeybees and bumblebees did not react to dried spiders, but solitary bees and syrphid flies showed a strong avoidance. Finally, we found no evidence that inflorescences with dried spiders suffered from a decrease in fitness in terms of a reduced seed set. We hypothesise that top-down effects of predators on plants via pollinators depend on the degree of specialisation of pollinators and their tendency to avoid spiders. 相似文献
2.
Parasites of mutualisms 总被引:13,自引:0,他引:13
DOUGLAS W. YU 《Biological journal of the Linnean Society. Linnean Society of London》2001,72(4):529-546
Cooperation invites cheating, and nowhere is this more apparent than when different species cooperate, known as mutualism. In almost all mutualisms studied, specialist parasites have been identified that purloin the benefits that one mutualist provides another. Explaining how parasites are kept from driving mutualisms extinct remains an unsolved problem because existing theories explaining the maintenance of cooperation do not apply to parasites of mutualisms. Nonetheless, these theories can be summarized in such a way as to suggest how mutualisms can persist in the face of parasites. (1) For cooperation to occur, the recipient of a benefit must reciprocate, and the recriprocated benefit must be captured by the initial giver or its offspring. (2) For cooperation to persist, the mutualism must be re-assembled each generation. Because most mutualisms are of the "by-product' type, broadly defined, the first condition is normally always fulfilled. Thus, the maintenance of mutualism usually requires enforcement of the second condition: reliable re-assembly. Hence, I argue that the persistence of mutualism is best understood by using theories of species coexistence, because each mutualist can be considered a resource for the other, and species coexistence theory explains how multiple taxa (e.g. parasites and mutualists) can stably partition a resource over multiple generations. This approach connects the study of mutualism to theories of population regulation and helps to identify key factors that have promoted the evolution, maintenance and breakdown of mutualism. I discuss how these ideas might apply to and be tested in ant-plant, fig-wasp and yucca-moth mutualisms. 相似文献
3.
4.
5.
The exploitation of mutualisms 总被引:8,自引:0,他引:8
Judith L. Bronstein 《Ecology letters》2001,4(3):277-287
Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation. 相似文献
6.
Mutualisms present a challenge for evolutionary theory. How is cooperation maintained in the face of selection for selfishness and cheating? Both theory and data suggest that partner choice, where one species preferentially directs aid to the more cooperative members of the other species, is central to cooperation in many mutualisms. However, the theory has only so far considered the evolutionary effects of partner choice on one of the species in a mutualism in isolation. Here, we investigate the co-evolution of cooperation and choice in a choosy host and its symbiont. Our model reveals that even though choice and cooperation may be initially selected, it will often be unstable. This is because choice reduces variation in the symbiont and, therefore, tends to remove the selective incentive for its own maintenance (a scenario paralleled in the lek paradox in female choice and policing in within-species cooperation). However, we also show that when variability is reintroduced into symbionts each generation, in the form of less cooperative individuals, choice is maintained. This suggests that the presence of cheaters and cheater species in many mutualisms is central to the maintenance of partner choice and, paradoxically, cooperation itself. 相似文献
7.
Ken Inoue 《Journal of biosciences》1993,18(4):525-536
The evolution and ecology of interactions between plants and pollinators are discussed based on the studies on the Izu Islands
and mainland Honshu, Japan. The species assemblage is depauperate, and long-tongued pollinators are absent or rare on the
islands. Bumblebees, one of the most important pollinators in Japan, are generally absent. Plants depending strongly on bumblebee
pollination are absent on Izu Islands, but those depending on varied pollinators including bumblebees display smaller flower
sizes and accommodate smaller pollinators than their mainland counterparts. Breeding systems of these species also shift to
partial inbreeding, possibly an evolutionary result of the decrease in pollinator availability. Changes in flowering phenology
between mainland and island populations also occur. Plants in the islands tend to reproduce vegetatively less frequently and
produce greater numbers of smaller seeds than those in the mainland. The possibility of evolution on the side of island pollinator
species is also discussed, although there are few data on this topic. 相似文献
8.
Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms. 相似文献
9.
Plant invasions--the role of mutualisms 总被引:11,自引:0,他引:11
Richardson DM Allsopp N D'Antonio CM Milton SJ Rejmánek M 《Biological reviews of the Cambridge Philosophical Society》2000,75(1):65-93
Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animal-mediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conductive for the establishment of various alien/alien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat. 相似文献
10.
A core interest in studies of mutualistic interactions is the ‘effectiveness’ of mutualists in providing benefits to their partners. In plant‐animal mutualisms it is widely accepted that the total effect of a mutualist on its partner is estimated as (1) a ‘quantity’ component multiplied by (2) a ‘quality’ component, although the meanings of ‘effectiveness,’ ‘quantity,’ and ‘quality’ and which terms are applied to these metrics vary greatly across studies. In addition, a similar quantity × quality = total effect approach has not been applied to other types of mutualisms, although it could be informative. Lastly, when a total effect approach has been applied, it has invariably been from a phytocentric perspective, focussing on the effects of animal mutualists on their plant partner. This lack of a common framework of ‘effectiveness’ of mutualistic interactions limits generalisation and the development of a broader understanding of the ecology and evolution of mutualisms. In this paper, we propose a general framework and demonstrate its utility by applying it to both partners in five different types of mutualisms: pollination, seed dispersal, plant protection, rhizobial, and mycorrhizal mutualisms. We then briefly discuss the flexibility of the framework, potential limitations, and relationship to other approaches. 相似文献
11.
12.
Interactions between pollinators, nectar robbers, defensive plants and non-defensive plants are characterized by evolutionary games, where payoffs for the four species are represented by population densities at steady states in the corresponding dynamical systems. The plant-robber system is described by a predator-prey model with the Holling II functional response, while the plant-pollinator system is described by a cooperative model with the Beddington-DeAngelis functional response. By combining dynamics of the models with properties of the evolutionary games, we show mechanisms by which pollination mutualisms could persist in the presence of nectar robbers. The analysis leads to an explanation for persistence of plant-pollinator-robber systems in real situations. 相似文献
13.
植物与传粉者相互作用的研究及其意义 总被引:5,自引:0,他引:5
生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和(蒋志刚等,1997),不仅体现在物种类别的多样性,而且体现在生态过程的复杂多样。认识生物多样性,特别是试图了解生物多样性的起源和形成机制,离不开生物与环境、生物与生物之间相互作用的研究。 相似文献
14.
植物与传粉者间相互作用,构成了复杂的传粉网络。非对称特化是共生互作网络中的有趣现象和基本特点,也被认为是植物-传粉者互作网络的结构特征之一。根据文献总结分析了植物-传粉者互作网络非对称特化的重要名词术语,并采用线性回归法深入分析了植物-传粉者互作网络的地理变异模式,以及植物生活型和网络大小等传粉网络特征对非对称程度的影响。结果表明:传粉网络大小与网络的交互作用间呈线性正相关关系,并随总物种丰度呈指数增长。25个传粉网络的线性回归斜率(Lβ)变异范围在0.002至0.031间,且斜率值随植物丰度(P)、传粉者丰度(A)、总物种丰度(R)、交互作用(I)及网络大小(M)上升而降低。海拔高度对传粉网络非对称性有一定影响效果,而纬度的变化并不显著影响传粉网络非对称性。草本植物、灌木及乔木植物与其传粉者之间的相关系数分别为-0.197,-0.026和0.200,表明草本物种比乔木物种非对称性更强。 相似文献
15.
The structure of a plant-pollinator food web 总被引:5,自引:0,他引:5
J. Memmott 《Ecology letters》1999,2(5):276-280
The pollination biology literature is dominated by examples of specialization between plants and their pollinators. However, a recent review shows that it is generalization that prevails in the field, with most plants having a number of pollinators and most pollinators visiting a number of plants. Consequently, the vast majority of plant–pollinator interactions are embedded in a complex web of plant–pollinator interactions. These plant-pollinator webs can be studied in the manner of conventional food webs and the aim of this paper is to illustrate how contemporary methods of web construction and analysis can be applied to plant-pollinator communities. 相似文献
16.
17.
Scale and macroecological patterns in seed dispersal mutualisms 总被引:2,自引:0,他引:2
K. C. Burns 《Global Ecology and Biogeography》2004,13(4):289-293
Although some studies of seed dispersal mutualisms have documented adaptive relationships between fruits and frugivores, others have shown that adaptive patterns are constrained by phylogenetic, historical or climatic effects. Variable results among studies have thwarted attempts to find a paradigm to unite the field and direct research. Two recent studies in Global Ecology and Biogeography exemplify this dichotomy. One paper reported adaptive relationships between abundances of birds and fruits, while the other study found that bird‐fruit abundance patterns were constrained by climatic effects. Almost paradoxically, both studies were conducted at the same locale. However, they focused on different spatio‐temporal scales. These results are surprisingly consistent with several other recent studies that have taken a macroecological approach. They also indicate that mutualistic relationships between fruits and frugivores are scale dependent. When viewed together, recent work suggests that the conflicting results of previous studies may result from spatio‐temporal variability of mutualistic relationships. This paper briefly reviews the emerging field of seed dispersal macroecology. A growing appreciation for scale appears to be leading the field in a new direction. 相似文献
18.
The macroecology of marine cleaning mutualisms 总被引:2,自引:0,他引:2
1. Marine cleaning mutualisms generally involve small fish or shrimps removing ectoparasites and other material from cooperating 'client' fish. We evaluate the role of fish abundance, body size and behaviour as determinants of interactions with cleaning mutualists. 2. Data come from eight reef locations in Brazil, the Caribbean, the Mediterranean and Australia. 3. We conducted a meta-analysis of client-cleaner interactions involving 11 cleaner and 221 client species. 4. There was a strong, positive effect of client abundance on cleaning frequency, but only a weak, negative effect of client body size. These effects were modulated by client trophic group and social behaviour. 5. This study adds to a growing body of evidence suggesting a central role of species abundance in structuring species interactions. 相似文献
19.
20.
Invasive alien species affect the composition and functioning of invaded ecosystems in many ways, altering ecological interactions that have arisen over evolutionary timescales. Specifically, disruptions to pollination and seed-dispersal mutualistic interactions are often documented, although the profound implications of such impacts are not widely recognized. Such disruptions can occur via the introduction of alien pollinators, seed dispersers, herbivores, predators or plants, and we define here the many potential outcomes of each situation. The frequency and circumstances under which each category of mechanisms operates are also poorly known. Most evidence is from population-level studies, and the implications for global biodiversity are difficult to predict. Further insights are needed on the degree of resilience in interaction networks, but the preliminary picture suggests that invasive species frequently cause profound disruptions to plant reproductive mutualisms. 相似文献